Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 153-160    https://doi.org/10.11896/j.issn.1005-023X.2017.06.030
  计算模拟 |
考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型
余滨杉1, 樊禹江2, 王社良1, 杨涛1
1 西安建筑科技大学土木工程学院, 西安710055;
2 长安大学建筑学院, 西安710061
A Simplified Constitutive Model of Ti-Ni Shape Memory Alloy Considering
Loading/Unloading Rate
YU Binshan1, FAN Yujiang2, WANG Sheliang1, YANG Tao1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
2 School of
Architecture, Chang’an University, Xi’an 710061
下载:  全 文 ( PDF ) ( 1715KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统研究了Ti-Ni形状记忆合金丝(SMA)应力-应变曲线、特征点应力、耗能能力、等效阻尼比随材料直径、应变幅值、加载速率、加载循环次数的变化规律;针对SMA唯象Brinson本构模型无法描述SMA动态力学性能的缺点,结合前述试验结果,提出了一种可考虑加/卸载速率影响的SMA简化本构模型。应用该模型对试验用SMA丝进行模拟,所得应力-应变曲线各特征点平均误差仅为3%,结果表明:所建立的速率相关SMA简化本构模型可较为精确地描述SMA在应力诱发相变过程中的超弹性力学行为,同时可反映加/卸载速率和应变幅值等主要因素对其动力本构模型的影响;该模型结构形式简单,具有较好的工程应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余滨杉
樊禹江
王社良
杨涛
关键词:  形状记忆合金  Brinson本构模型  速率相关  动力本构模型    
Abstract: Systematic study was conducted on variation regularity for stress-strain curve, feature points stress, dissipated energy, equivalent damping ratio of Ti-Ni shape memory alloy (SMA) wires changed with diameter of wires, strain amplitude, loa-ding rate and loading cyclic number. Combining with above experimental results, a simplified constitutive model for SMA considering loading/unloading rate was proposed, aiming at making up the disadvantage of phynomenological Brinson constitutive model that cannot describe dynamic mechanical property of SMA. Then, simulation of experimental SMA wires with this constitutive model was conducted. The average errors of feature points in stress-strain curve were only 3%. The results showed the proposed simplified rate-dependent constitutive model of SMA could satisfactorily describe the superelastic mechanical behavior of SMA during the stress-induced transformation, and reflect the influence of dominant factors such as loading/unloading rate and strain amplitude to the dynamic constitutive model. Therefore, with simple formulation, the constitutive model is useful for practical engineering application of SMA.
Key words:  shape memory alloy (SMA)    brinson constitutive model    rate-dependent    dynamic constitutive model
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TU502+.6  
基金资助: 国家自然科学基金(51678480);陕西省工业攻关项目(2014K06-34);陕西省博士后基金
作者简介:  余滨杉:1990年生,博士研究生,主要研究方向为新型智能材料及其在结构振动工程中的应用,E-mail:yubinshan99@163.com
引用本文:    
余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
YU Binshan, FAN Yujiang, WANG Sheliang, YANG Tao. A Simplified Constitutive Model of Ti-Ni Shape Memory Alloy Considering
Loading/Unloading Rate. Materials Reports, 2017, 31(6): 153-160.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.030  或          https://www.mater-rep.com/CN/Y2017/V31/I6/153
1 Xing Dejin. New SMA damper and application for seismic reduction and control of structures[D].Tianjin:Tiajin University,2008(in Chinese).
邢德进.新型SMA阻尼器及结构减震控制应用研究[D].天津:天津大学,2008.
2 Corbi O. Shape memory alloys and their application in sturctural oscillations attenuation[J]. Simulation Modeling Practice and Theory,2003,11(5-6):387.
3 Ren Wenjie, Li Hongnan, Song Gangbing,et al. Study on seismic response control of frame structure using innovative re-centring SMA damper[J].China Civil Eng J,2013,46(6):14(in Chinese).
任文杰,李宏男,宋钢兵,等.新型自复位SMA阻尼器对框架结构减震控制的研究[J].土木工程学报,2013,46(6):14.
4 Zhao Xiang. Theoretical and experiment research on seismic protection of ancient pagoda structures based on shape memory alloy[D].Xi’an: Xi’an University of Architecture Science and Technology,2008(in Chinese).
赵祥.应用形状记忆合金进行古塔结构抗震保护的理论和试验研究[D].西安:西安建筑科技大学,2008.
5 Ren Wenjie. Seismic response control of structures using superelastic shape memory alloy wires[D].Dalian:Dalian University of Tech-nology,2008(in Chinese).
任文杰.超弹性形状记忆合金丝对结构减震控制的研究[D].大连:大连理工大学,2008.
6 Brinson L C. One-dimensional constitutive behavior of shape me-mory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J]. J Intelligent Mater Systems Struct,1993,4:229.
7 Tanaka K, Sato Y. Phenomenological description of the mechanical behavior of shape memory alloys [J]. Trans JSME,1992,53(491):1368.
8 Liang C. The constitutive modeling of shape memory alloys [D].Virginia: Virginia Polytechnic Institute and State University,1990.
9 Wu Yunze. Study on mechanical properties and constitutive model of shape memory alloy[D].Guangzhou:South China University of Technology,2012(in Chinese).
吴昀泽.形状记忆合金的力学性能与本构模型研究[D]. 广州:华南理工大学,2012.
[1] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[2] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[3] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[4] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[5] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[6] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[7] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[8] 刘兵飞, 董少哲, 周蕊, 杜春志. SMA损伤对航空发动机变形齿单齿力学性能的影响[J]. 材料导报, 2021, 35(16): 16070-16075.
[9] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[10] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[11] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[12] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[13] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[14] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed