Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070029-10    https://doi.org/10.11896/cldb.23070029
  金属与金属基复合材料 |
7×19构型NiTi形状记忆合金绞线超弹性试验研究
周玉浩1, 连鸣1,2,*, 王颜凯1, 苏明周1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学结构工程与抗震教育部重点实验室,西安 710055
Experimental Investigation on Superelastic Behaviors of NiTi Shape Memory Alloy Cables with 7×19 Sections
ZHOU Yuhao1, LIAN Ming1,2,*, WANG Yankai1, SU Mingzhou1,2
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Key Lab of Structural Engineering and Earthquake Resistance, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 11221KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为充分发挥大直径NiTi形状记忆合金(SMA)绞线的超弹性性能,在常温下对单丝直径1.0 mm的7×19构型SMA绞线进行了循环拉伸试验;分析了热处理方案、应变幅值、循环次数、预训练和加载速率等因素对其超弹性的影响,得到了各因素下SMA绞线的残余应变、能量耗散、等效粘滞阻尼比、强度和刚度等力学参数变化规律。结果表明:针对本研究的7×19构型SMA绞线,400 ℃退火10 min的热处理方案下其相变应力和恢复率最高,热处理时间过长会造成这些特性严重退化;SMA绞线内部单丝变形和应力发展不均匀程度更高,滞回曲线无明显相变平台;恒定幅值拉伸下SMA绞线的初始弹性模量和极限应力变化相对较小,而相变平台高度、恢复率以及等效粘滞阻尼比退化较为明显;通过预训练的方式可以减轻SMA绞线的功能损伤,显著减小残余变形,提高可恢复能力;加载速率对SMA绞线的马氏体应力和屈服平台切线模量的影响较大,当加载速率超过1×10-2 s-1后,滞回曲线对加载速率的变化不再敏感。试验结果可为7×19构型SMA绞线的应用提供数据支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周玉浩
连鸣
王颜凯
苏明周
关键词:  7×19构型形状记忆合金绞线  超弹性  热处理  力学性能  循环加载    
Abstract: This study aimed to investigate the cyclic tensile behavior of 7×19 NiTi shape memory alloy (SMA) cables with a single wire diameter of 1.0 mm, in order to optimize their superelastic properties for engineering applications. A comprehensive analysis was conducted to assess the effects of various factors, including heat treatment strategy, strain amplitude, number of cycles, pre-training, and loading rate on the mechanical parameters of SMA cables. The obtained mechanical parameters, such as residual strain, energy dissipation, equivalent viscous damping ratio, strength, and stiffness were examined under different conditions. The results showed that the annealing temperature of 400 ℃ for 10 minutes produced the highest phase transformation stress and recovery rate for the 7×19 SMA cable configuration, which deteriorated with prolonged annealing time. The deformation and stress development of the single wire inside the SMA cable are more uneven, and the hysteresis curve has no obvious phase transformation platform. The initial elastic modulus and ultimate stress of SMA cables under constant amplitude tension are relatively small, while the degradation of phase transition platform height, recovery rate and equivalent viscous damping ratio is obvious. Moreover, the pre-training method can reduce the functional damage of the SMA cables, significantly reduce the residual deformation, and improve the recovery ability. The loading rate has a great influence on the martensitic stress and the tangent modulus of the yield platform of the SMA cables. When the loading rate exceeds 1×10-2 s-1, the hysteresis curve is not sensitive to the change of the loading rate. The results provide experimental data support for the application of 7×19 section SMA cables.
Key words:  7×19 section superelastic shape memory alloy cable    superelasticity    heat treatment    mechanical property    cyclic loading
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG139.6  
基金资助: 国家自然科学基金(52078411;52478205);陕西省创新能力支撑计划-青年科技新星项目(2022KJXX-47);陕西省教育厅青年创新团队科研计划项目(22JP041)
通讯作者:  *连鸣,西安建筑科技大学副教授、博士研究生导师。主要从事韧性防震钢结构体系与智能材料的研究工作。主持国家自然科学基金项目3项,公开发表学术论文100余篇,其中以第一或通信作者发表SCI检索论文27篇。入选陕西省青年科技新星、陕西省高校科协青年人才托举计划。获陕西高等学校科学技术奖一等奖1项(排名1)。lianming@xauat.edu.cn   
作者简介:  周玉浩,西安建筑科技大学土木工程学院结构工程专业博士研究生,在苏明周教授、连鸣副教授的指导下进行研究。目前主要从事智能材料和新型钢结构体系抗震性能与设计方法研究。
引用本文:    
周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
ZHOU Yuhao, LIAN Ming, WANG Yankai, SU Mingzhou. Experimental Investigation on Superelastic Behaviors of NiTi Shape Memory Alloy Cables with 7×19 Sections. Materials Reports, 2024, 38(21): 23070029-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070029  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070029
1 Tyber J, McCormick J, Gall K, et al. Journal of Engineering Mechanics, 2007, 133(9), 1009.
2 McCormick J, Tyber J, DesRoches R, et al. Journal of Engineering Mechanics, 2007, 133(9), 1019.
3 Jani J M, Leary M, Subic A, et al. Materials & Design, 2014, 56, 1078.
4 Chang W S, Araki Y. In:Proceedings of the Institution of Civil Engineers-Civil Engineering. Thomas Telford Ltd, 2016, pp. 87.
5 Zuo X B,Li A Q,Ni L F,et al. China Civil Engineering Journal, 2004, 37(12), 10 (in Chinese).
左晓宝, 李爱群, 倪立峰, 等.土木工程学报,2004,37(12), 10.
6 Qian H, Li J B, Li H N, et al. Journal of Vibration and Shock, 2013, 32(24), 89 (in Chinese).
钱辉, 李静斌, 李宏男, 等. 振动与冲击, 2013, 32(24), 89.
7 Liu M M, Li H N, Fu X. Engineering Mechanics, 2018, 35(6), 52 (in Chinese).
刘明明, 李宏男, 付兴. 工程力学, 2018, 35(6), 52.
8 Han J P, Zhang Q C. Engineering Mechanics, 2021, 38(1), 195 (in Chinese).
韩建平,章全才. 工程力学, 2021, 38(1), 195.
9 Hu S J, Gu Q, Jiang G Q, et al. Engineering Mechanics, 2021, 38(1), 109(in Chinese).
胡淑军,顾琦,姜国青, 等. 工程力学, 2021, 38(1), 109.
10 Ren W J, Wang L Q, Jia J S, et al. Journal of Functional Materials, 2013, 44(2), 258 (in Chinese).
任文杰, 王利强, 贾俊森, 等. 功能材料, 2013, 44(2), 258.
11 Fang C, Yam M C H, Ma H, et al. Materials and Structures, 2015, 48(4), 1013.
12 Kang L P, Qian H, Guo Y C, et al. Materials, 2020, 13(17), 3729.
13 Qian H, Li Z A, Pei J Z, et al. Engineering Mechanics, 2020, 37(11), 135 (in Chinese).
钱辉,李宗翱,裴金召, 等. 工程力学, 2020, 37(11), 135.
14 Reedlunn B, Daly S, Shaw J. International Journal of Solids and Structures, 2013, 50(20-21), 3009.
15 Biggs D B, Shaw J A. In: Behavior and Mechanics of Multifunctional Materials and Composites. SPIE, 2016, pp, 79.
16 Ozbulut O E, Daghash S, Sherif M M. Journal of Materials in Civil Engineering, 2016, 28(4), 04015176.
17 Wang W, Fang C, Yang X, et al. Engineering Structures, 2017, 153, 503.
18 Liu Y, Wang H, Qiu C, et al. Materials, 2019, 12(6), 997.
19 Fang C, Zhou X, Osofero A I, et al. Smart Materials and Structures, 2016, 25(10), 105013.
20 Wang B, Zhu S, Chen K, et al. Engineering Structures, 2020, 218, 110836.
21 DesRoches R, McCormick J, Delemont M. Journal of Structural Enginee-ring, 2004, 130(1), 38.
22 Fang C, Zheng Y, Chen J, et al. Engineering Structures, 2019, 183, 533.
23 Fang Cheng, Wang Wei, Chen Yiyi. Journal of Building Structures, 2019, 40(7), 1 (in Chinese).
方成, 王伟, 陈以一. 建筑结构学报, 2019, 40(7), 1.
24 Cui D, Zhang W, Wang Z Y. World Earthquake Engineering, 2018, 34(3), 94 (in Chinese).
崔迪, 张威, 王圳颖. 世界地震工程, 2018, 34(3), 94.
25 Mas B, Biggs D, Vieito I, et al. Construction and Building Materials, 2017, 148, 307.
26 Chen J, Fang C, Wang W, et al. Journal of Constructional Steel Research, 2020, 175, 106318.
27 Fang C, Zheng Y, Chen J, et al. Engineering Structures, 2019, 183, 533.
28 Shi F, Zhou Y, Ozbulut O E, et al. Engineering Structures, 2021, 228, 111611.
29 Shi F, Ozbulut O E, Li Z, et al. Journal of Building Engineering, 2022, 52, 104340.
30 Shi Y, Qian H, Kang L, et al. Smart Materials and Structures, 2021, 30(9), 095019.
31 Evirgen A, Karaman I, Pons J, et al. Materials Science and Engineering: A, 2016, 655, 193.
32 Lagoudas, Dimitris C. Shape memory alloys: modeling and engineering applications, Springer Science & Business Media, 2008.
33 Eggeler G, Hornbogen E, Yawny A, et al. Materials Science and Engineering A, 2004, 378(1-2), 24.
34 Miyazaki S, Imai T, Igo Y, et al. Metallurgical Transactions A, 1986, 17, 115.
35 Frotscher M, Wu S, Simon T, et al. Advanced Engineering Materials, 2011, 13(5), B181.
36 Qian H, Wei D, Shi Y, et al. Soil Dynamics and Earthquake Enginee-ring, 2023, 168, 107850.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[13] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed