Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070098-7    https://doi.org/10.11896/cldb.23070098
  金属与金属基复合材料 |
新型Ti2Cd增强银基电触头材料的制备及抗电弧侵蚀特性
孙万杰1,†, 石雨欣1,†, 丁健翔1,2,*, 任万滨3, 盘志雄4, 张培根2,*, 孙正明2
1 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
2 东南大学材料科学与工程学院,江苏省先进金属材料重点实验室,南京 211189
3 哈尔滨工业大学电气工程及自动化学院,哈尔滨 150001
4 佛山市通宝电气精密合金有限公司,广东 佛山 528100
Preparation and Anti-arc Erosion Property of Ag Matrix Electrical Contact Material Reinforced by Novel Ti2Cd
SUN Wanjie1,†, SHI Yuxin1,†, DING Jianxiang1,2,*, REN Wanbin3, PAN Zhixiong4, ZHANG Peigen2,*, SUN Zhengming2
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China
4 Foshan Tongbao Electical Precision Alloy Co., Ltd., Foshan 528100, Guangdong, China
下载:  全 文 ( PDF ) ( 7874KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含Cd银基电触头材料由于其优异的电接触性能,可以满足军事国防和航空航天领域对高稳定性和长寿命的要求。为了在满足高性能要求的前提下进一步降低Cd含量,本研究采用无压技术合成了MAX相Ti2CdC的高纯度中间体Ti2Cd粉末,并将其用于增强Ag基体。制备的Ag/Ti2Cd复合材料的Cd含量比传统Ag/CdO降低了38.31%。在系统研究热处理温度对Ag/Ti2Cd复合材料物相、形貌、界面及综合物理性能影响的基础上,优选具有高致密度(97.77%)、低电阻率(2.34 μΩ·cm)、中等硬度(90.8HV)和高抗拉强度(189.9 MPa)的400 ℃热处理样品进行电弧放电测试。在苛刻条件下(DC 28 V/20 A)放电40 000次后,电接触表面的微观形态演变、相变化和元素分布结果表明,高稳定性的Ti2Cd增强相与Ag基体间的良好界面结合提高了熔池粘度,保证了电弧侵蚀初期低且稳定的接触电阻(平均值13.20 mΩ)和熔焊力(平均值0.6 N),以及小幅度波动的静压力(2.2~2.5 N)。Ti2Cd的分解吸收电弧能量和Cd气化灭弧作用是电弧侵蚀后期电触点燃弧能量和燃弧时间稳定的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙万杰
石雨欣
丁健翔
任万滨
盘志雄
张培根
孙正明
关键词:  低压电器  银基复合材料  Ti-Cd化合物  电接触性能  电弧侵蚀机理    
Abstract: Due to their outstanding electrical contact properties, Cd-containing silver- matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications. In order to further reduce the Cd content under the premise of meeting the high-performance requirements, in this study, high-purity intermediate Ti2Cd powder of MAX phase (Ti2CdC) was synthesized with a pressureless technique and then applied to reinforce the Ag matrix. The Cd content of the as-prepared Ag/Ti2Cd composites was actually reduced by 38.31% compared with conventional Ag/CdO material. Based on the systematic study of the effect of heat treatment temperature on the physical phase, morphology, interface and comprehensive physical properties of Ag/Ti2Cd composites, the preferred samples (heat treated at 400 °C for 1 h) showed high density (97.77%), low resistivity (2.34 μΩ·cm), moderate hardness (90.8HV), high tensile strength (189.9 MPa), and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions (DC 28 V/20 A). The results of microscopic morphological evolution, phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti2Cd reinforcing phase, good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion, results in low and stable contact resistance (average value 13.20 mΩ) and welding force (average value 0.6 N), low fluctuation of static force (2.2—2.5 N). The decomposition and absorption energy of Ti2Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.
Key words:  low-voltage apparatus    Ag matrix composite    Ti-Cd compound    electrical contact properties    arc erosion mechanism
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG14  
基金资助: 国家自然科学基金(52101064);江苏省博士后科研资助计划项目(2020Z158);产学研合作项目(RH2000002728;RH2000002332;RH2100000263)
作者简介:  †共同第一作者
引用本文:    
孙万杰, 石雨欣, 丁健翔, 任万滨, 盘志雄, 张培根, 孙正明. 新型Ti2Cd增强银基电触头材料的制备及抗电弧侵蚀特性[J]. 材料导报, 2024, 38(21): 23070098-7.
SUN Wanjie, SHI Yuxin, DING Jianxiang, REN Wanbin, PAN Zhixiong, ZHANG Peigen, SUN Zhengming. Preparation and Anti-arc Erosion Property of Ag Matrix Electrical Contact Material Reinforced by Novel Ti2Cd. Materials Reports, 2024, 38(21): 23070098-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070098  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070098
1 Ding J X, Sun Z M, Zhang P G, et al. Materials Reports, 2018,32(1) 58 (in Chinese).
丁健翔, 孙正明, 张培根, 等. 材料导报, 2018,32(1) 58.
2 Ding J X, Huang P Y, Zha Y H, et al. Journal of Inorganic Materials, 2020, 35(6), 729.
3 Sawa K, Hasegawa M. IEICE Transactions on Electronics, 2000, 83(9), 1363.
4 Wu Q, Xu G, Yuan M, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(5), 845.
5 Chen J, Sun J, Zhang K, et al. Electrical Engineering Alloy, 2002(4), 41 (in Chinese).
陈敬超, 孙加林, 张昆华, 等.电工材料, 2002(4), 41.
6 Ćosović V, Cosovic A, Talijan N M, et al. Science of Sintering, 2012, 44(2), 245.
7 Rust R M, Elshennawy A, Rabelo L. South African Journal of Industrial Engineering, 2022, 33(1), 25.
8 Keonjian E, Giddle A, Horowitz S, et al. National Convention on Military Electronics (4TH), Washington 1960.
9 Weimer J. In: 39th Aerospace Sciences Meeting and Exhibit. Reno, 2001, pp.1147.
10 Wu C P, Zhao Q, Li N N, et al. Journal of Alloys and Compounds, 2018, 766, 161.
11 Wei Z, Zhang L, Shen T, et al. Journal of Materials Engineering and Performance, 2016, 25(9), 3662.
12 Wu C, Yi D, Weng W, et al. Materials & Design, 2015, 85, 511.
13 Kesim M T, Yu H, Sun Y, et al. Corrosion Science, 2018, 135, 12.
14 Wang Z, Zhang X, Jiang S, et al. Journal of Alloys and Compounds, 2020, 828, 154412.
15 Sun Z M. International Materials Reviews, 2011, 56(3), 143.
16 Ding J X, Tian W B, Zhang P G, et al. Journal of Advanced Ceramics, 2019, 8(1), 90.
17 Ding J X, Xia X X, Zhang K G, et al. Materials Reports, 2023, 37(16), 22040006.
18 Ding J, Tian W, Wang D, et al. Corrosion Science, 2019, 156, 147.
19 Ding J X, Zhang K G, Liu D M, et al. Journal of Inorganic Materials, 2022, 37, 567.
20 Guile A. Proceedings of the Institution of Electrical Engineers, 1971, 118, 1131.
21 Swingler J, Mcbride J. In: Electrical Contacts-1995. Proceedings of the Forty-First IEEE Holm Conference on Electrical Contacts. Montreal, 1995, pp.381.
22 Hamedi M, Atashparva M. Welding in the World, 2017, 61(2), 269.
23 Zhang C, Ren W, Liao X. Materials (Basel), 2022, 15(16), 5667.
24 Wang D D, Tian W B, Ding J X, et al. Journal of Inorganic Materials, 2020, 35(1), 46 (in Chinese).
汪丹丹, 田无边, 丁健翔, 等. 无机材料学报, 2020, 35(1), 46.
25 Ushio M. Pure and Applied Chemistry, 1988, 60(5), 809.
26 Gu L, Zhu Y, He G, et al. International Journal of Heat and Mass Transfer, 2019, 135, 674.
[1] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[2] 王塞北, 彭明军, 孙勇, 谢明, 王松, 段永华, 陈松, 刘满门, 杨有才. 金属触头电接触性能研究进展[J]. 材料导报, 2020, 34(9): 9117-9123.
[3] 丁健翔,孙正明,张培根,田无边,张亚梅. Ag基触头材料的研究现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 58-66.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed