Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23060190-9    https://doi.org/10.11896/cldb.23060190
  无机非金属及其复合材料 |
形状记忆合金增强水泥基复合材料及其构件研究进展
秦煜1,2, 王亭1, 辛景舟1, 汤喻杰1, 王威娜1,*
1 重庆交通大学土木工程学院,重庆 400074
2 重庆大学土木工程学院,重庆 400044
Research Progress of Shape Memory Alloy Reinforced Cement-based Composites Materials and Its Components
QIN Yu1,2, WANG Ting1, XIN Jingzhou1, TANG Yujie1, WANG Weina1, *
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 12102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的水泥基材料适用性强、经济性高、用途广泛,但是容易开裂,难以恢复。通过热弹性马氏体相变及其逆相变,形状记忆合金拥有了独特的形状记忆效应、超弹性等卓越性能。因此,可以利用形状记忆合金增强水泥基材料及构件,克服传统水泥基材料抗裂性能差的缺陷,改善水泥基材料构件的开裂和变形自恢复能力。本文从形状记忆合金的材料特性与种类、形状记忆合金纤维增强水泥基复合材料及形状记忆合金筋材增强水泥基复合材料构件三个方面进行综合阐述,并指出现有研究中存在的不足,展望了形状记忆合金增强水泥基复合材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦煜
王亭
辛景舟
汤喻杰
王威娜
关键词:  形状记忆合金  水泥基复合材料  自恢复  形状记忆效应  超弹性    
Abstract: Traditional cement-based materials have strong applicability, high economy, and wide range of uses. However, they are prone to cracking and difficult to recover. Shape memory alloys have unique properties such as shape memory effect and superelasticity through thermoelastic martensitic phase transformation and its reverse counterpart. Therefore, shape memory alloys can be used to enhance cement-based materials and components, overcome the defects of poor cracking resistance in traditional cement-based materials, and improve the ability of self-recovery for cracking and deformation in cement-based components. This paper provides a comprehensive overview of shape memory alloy materials in terms of their characteristics and types, shape memory alloy fiber-reinforced cement-based composites, and shape memory alloy bar-reinforced cement-based composite components. It also points out the existing shortcomings in current research and discusses the prospects for the development of shape memory alloy-reinforced cement-based composites.
Key words:  shape memory alloy    cement-based composites    self-recovery    shape memory effect    superelasticity
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51978114;52078091); 重庆市自然科学基金(cstc2020jcyj-msxmX0624)
通讯作者:  *王威娜,通信作者,重庆交通大学教授、博士研究生导师。2006年7月本科毕业于长安大学公路学院,2014年7月在长安大学公路学院道路与铁道工程专业取得博士学位,期间获得公派联合培养博士研究生资格,在美国佐治亚理工学院开展学习与研究。主要从事道路材料与结构的研究工作,发表学术论文20余篇。wwn0816@yeah.net   
作者简介:  秦煜,重庆大学副教授、硕士研究生导师,重庆交通大学博士研究生导师。2005年7月本科毕业于长安大学公路学院,2013年4月在长安大学公路学院桥梁与隧道工程专业取得博士学位。担任重庆市科学技术协会第五届委员会委员。主要从事桥梁与道路结构、智能材料结构的研究工作。发表学术论文20余篇。
引用本文:    
秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
QIN Yu, WANG Ting, XIN Jingzhou, TANG Yujie, WANG Weina. Research Progress of Shape Memory Alloy Reinforced Cement-based Composites Materials and Its Components. Materials Reports, 2024, 38(19): 23060190-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060190  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23060190
1 Chai X W, Xie Q, Wang X, et al. Journal of Building Structures, 2022, 43(S1), 353 (in Chinese).
柴鑫伟, 谢群, 王欣, 等. 建筑结构学报, 2022, 43(S1), 353.
2 Cai R, Qi H, Mao J. Journal of Materials in Civil Engineering, 2022, 34(4), 04022012.
3 Li M, Li H B. Packaging Journal, 2014, 6(4), 17 (in Chinese).
李敏, 黎厚斌. 包装学报, 2014, 6(4), 17.
4 Ma N N, Lu Y H, Dai H Q. Journal of Textile Research, 2018, 39(4), 170 (in Chinese).
马妮妮, 卢业虎, 戴宏钦. 纺织学报, 2018, 39(4), 170.
5 Su X Z, Liu Z Y, Xie C P, et al. China Text Leader, 2012(10), 70 (in Chinese).
苏旭中, 刘忠玉, 谢春萍, 等. 纺织导报, 2012(10), 70.
6 Liu Y. Chinese & Foreign Entrepreneurs, 2018(31), 111 (in Chinese).
刘严. 中外企业家, 2018(31), 111.
7 Barbarino S, Saavedra F E I, Ajaj R M, et al. Smart Materials and Structures, 2014, 23(6), 063001.
8 Wang J J. Research on self-repairing performance of SMA rebar reinforced concrete beam. Master's Thesis, Shenyang Jianzhu University, China, 2017 (in Chinese).
王俊君. SMA筋混凝土梁自修复性能研究. 硕士学位论文, 沈阳建筑大学, 2017.
9 Di S K, Li H, Du Y F, et al. Journal of Building Materials, 2009, 12(1), 27 (in Chinese).
狄生奎, 李慧, 杜永峰, 等. 建筑材料学报, 2009, 12(1), 27.
10 Ölander A. Journal of the American Chemical Society, 1932, 54(10), 3819.
11 Buehler W J, Gilfrich J V, Wiley R C. Journal of Applied Physics, 1963, 34(5), 1475.
12 Guo L, Zhang X Q. Journal of Functional Materials and Devices, 2020, 26(5), 323 (in Chinese).
郭良, 张修庆. 功能材料与器件学报, 2020, 26(5), 323.
13 Brocca M, Brinson L, Baant Z P. Journal of the Mechanics and Physics of Solids, 2002, 50(5), 1051.
14 Tao Z X. Shonghai Steel & Iron Research, 1985(2), 53 (in Chinese).
陶正兴. 上海钢研, 1985(2), 53.
15 Yang S L, Xu T D, Li Q F. Physics of materials, Harbin Institute of Technology Press, China, 2004, pp.192 (in Chinese).
杨尚林, 徐庭栋, 李庆芬. 材料物理学, 哈尔滨工业大学出版社, 2004, pp.192.
16 Sherif M M, Khakimova E M, Ozbulut O E, et al. Journal of Intelligent Material Systems and Structures, 2018, 29(4), 684.
17 Zhao L C, Cai W, Zheng Y F. Shape memory effect and superelasticity in alloys, National Defense Industry Press, China, 2002, pp.44 (in Chinese).
赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性, 国防工业出版社, 2002, pp.44.
18 Suhail R, Amato G, Mccrum D P. Engineering Structures, 2020, 206(C), 110128.
19 Yan S, Jiang X X, Du C H, et al. World Earthquake Engineering, 2020, 36(4), 96 (in Chinese).
阎石, 蒋欣欣, 杜长虹, 等. 世界地震工程, 2020, 36(4), 96.
20 Xing D J, Li Z X. Materials Reports, 2006, 20(8), 62 (in Chinese).
邢德进, 李忠献. 材料导报, 2006, 20(8), 62.
21 Zhang J J, Yin Y H, Zhu J Y. Sensors, 2013, 13(10), 12958.
22 Mauro D, Donatello C. International Journal of Mechanical Sciences, 2001, 43(11), 2657.
23 Deng Z C, Li Q B. China Civil Engineering Journal, 2002, 35(2), 41 (in Chinese).
邓宗才, 李庆斌. 土木工程学报, 2002, 35(2), 41.
24 Zhou Y H, Lian M, Wang Y K, et al. Materials Reports, 2024, 38(21), 23070029(in Chinese).
周玉浩, 连鸣, 王颜凯, 等. 材料导报, 2024, 38(21), 23070029.
25 Ye J J, He Z R, Zhang K G, et al. Acta Metallurgica Sinica, 2021, 57(6), 717 (in Chinese).
叶俊杰, 贺志荣, 张坤刚, 等. 金属学报, 2021, 57(6), 717.
26 Chen H, Xiao F, Liang X, et al. Acta Materialia, 2019, 177, 169.
27 He Z R, Wang F, Zhou J E. Transactions of Materials and Heat Treatment, 2005, 26(5), 21 (in Chinese).
贺志荣, 王芳, 周敬恩. 材料热处理学报, 2005, 26(5), 21.
28 Ma J, Karaman I, Noebe R D. International Materials Reviews, 2010, 55(5), 257.
29 IvaniĆ I, Kožuh S, GrguriĆ T H, et al. Materials, 2022, 15(5), 1825.
30 Araki Y, Endo T, Omori T, et al. Earthquake Engineering & Structural Dynamics, 2011, 40(1), 107.
31 Aksu C C, Aydodu A, Aydodu Y. Journal of Superconductivity & Novel Magnetism, 2011, 24(1-2), 871.
32 Huang H Y, Wang W L, Liu J L, et al. Materials China, 2016, 35(12), 919 (in Chinese).
黄海友, 王伟丽, 刘记立, 等. 中国材料进展, 2016, 35(12), 919.
33 Cao J, Zuo S G, Wang G S, et al. Heat Treatment, 2022, 37(4), 12 (in Chinese).
曹军, 左舜贵, 王盖世, 等. 热处理, 2022, 37(4), 12.
34 Maruyama T, Kubo H. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, Woodhead Publishing, 2011, pp.141.
35 Yang J N, Huang B, Gu X J, et al. Chinese Journal of Solid Mechanics, 2021, 42(4), 345 (in Chinese).
杨建楠, 黄彬, 谷小军, 等. 固体力学学报, 2021, 42(4), 345.
36 Huang H Y, Zhang W S. Journal of Vibration and Shock, 2019, 38(18), 154 (in Chinese).
黄浩宇, 张纹韶. 振动与冲击, 2019, 38(18), 154.
37 Doyup L, Toshihiro O, Kwangsik H, et al. Shape Memory and Superelasticity, 2018, 4(1), 102.
38 Zhang Z X, Fang C, Wang W, et al. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(2), 411 (in Chinese).
张哲熹, 方成, 王伟, 等. 防灾减灾工程学报, 2022, 42(2), 411.
39 Zhou Z Z, Wang Z J, Jiao S S, et al. Materials Reports, 2023, 37(16), 217 (in Chinese).
周珍珍, 汪佐瑾, 焦世舜, 等. 材料导报, 2023, 37(16), 217.
40 Li J, Jin M, Tian D Y, et al. Acta Materiae Compositae Sinica, 2006, 23(4), 149 (in Chinese).
李璟, 金明, 田东艳, 等. 复合材料学报, 2006, 23(4), 149.
41 Ali M A E M, Soliman A M, Nehdi M L. Materials & Design, 2017, 117, 139.
42 Choi E, Mohammadzadeh B, Hwang J H, et al. Construction & Building Materials, 2018, 167, 605.
43 Choi E, Kim D, Chung Y S, et al. Materials Research Bulletin, 2014, 58, 28.
44 Dehghani A, Aslani F, Liu Y N. Construction & Building Materials, 2022, 323, 126570.
45 Yang Z, Zhong Y L, Yang Z, et al. Journal of Building Materials, 2023, 26(5), 555 (in Chinese).
杨曌, 钟奕岚, 杨智, 等. 建筑材料学报, 2023, 26(5), 555.
46 Yang Z, Dou N, Dong H. Industrial Construction, 2021, 51(9), 188 (in Chinese).
杨曌, 窦楠, 董浩. 工业建筑, 2021, 51(9), 188.
47 Choi E, Kim D J, Chung Y S, et al. Smart Materials & Structures, 2014, 24(1), 015018.
48 Moser K, Bergamini A, Christen R, et. al. Materials and Structures, 2005, 38(5), 593.
49 Kim D J, Kim H A, Chung Y S, et al. Journal of Intelligent Material Systems and Structures, 2016, 27(2), 249.
50 Sherif M M, Tanks J, Ozbulut O E. Cement & Concrete Research, 2017, 95, 178.
51 Shajil N, Srinivasan S M, Santhanam M. Materials & Structures, 2013, 46(4), 651.
52 Lee J H, Lee K J, Choi E. Composites Part B, 2018, 153, 264.
53 Chi Y, Li M, Xu L, et al. International Journal of Solids and Structures, 2015, 75-76, 199.
54 Sherif M M, Khakimova E M, Jonathon T, et al. Composite Structures, 2018, 201, 248.
55 Ayoub D, Farhad A. Construction and Building Materials, 2021, 298, 123888.
56 Kotamala S. Prestressing of simply supported concrete beam with nitinol shape memory alloy. Master's Thesis, The University of Toledo, USA, 2004.
57 Xue W C, Liu Z Y, Li J, et al. China Civil Engineering Journal, 2009, 42(6), 22 (in Chinese).
薛伟辰, 刘振勇, 李杰, 等. 土木工程学报, 2009, 42(6), 22.
58 Li X P, Li M, Song G. Smart Materials & Structures, 2015, 24(2), 025024.
59 Qian H, Chen C, Zhang Q Y, et al. Engineering Mechanics, 2023, 40(6), 73 (in Chinese).
钱辉, 陈程, 张庆元, 等. 工程力学, 2023, 40(6), 73.
60 Cui D, Li H N, Song G B. Journal of Vibration and Shock, 2010, 29(4), 150 (in Chinese).
崔迪, 李宏男, 宋钢兵. 振动与冲击, 2010, 29(4), 150.
61 Billah A, Alam M S. Construction & Building Materials, 2012, 28(1), 730.
62 Qian H, Qiu P F, Jin G Y, et al. Engineering Mechanics, 2023(4), 172 (in Chinese).
钱辉, 邱培凡, 金光耀, 等. 工程力学, 2023(4), 172.
63 Chen Q, Andrawes B. Journal of Structural Engineering, 2017, 143(5), 04017008.
64 Khaled A, Raafat E. Engineering Structures, 2020, 213(C), 110547.
65 Chen Q, Andrawes B. Structures, 2017, 11, 1.
66 Li S X. Experimental study on repairing damaged reinforced concrete columns with prestressed SMA wires under axial compression. Master's Thesis, Guangdong University of Technology, China, 2021 (in Chinese).
李上雄. 预应力SMA丝修复受损钢筋混凝土柱轴压试验研究. 硕士学位论文, 广东工业大学, 2021.
67 Xiao Z F. Seismic performances of RC beam-column joints reinforced with shape memory alloy tendons. Master's Thesis, Shenyang Jianzhu University, China, 2018 (in Chinese).
肖正锋. 形状记忆合金混凝土梁柱节点抗震性能研究. 硕士学位论文, 沈阳建筑大学, 2018.
68 Yan S, Du C H, Xiao Z F, et al. Journal of Seismological Research, 2020, 43(3), 491 (in Chinese).
阎石, 杜长虹, 肖正峰, 等. 地震研究, 2020, 43(3), 491.
69 Pei Q, Cheng Z, Wu C. Journal of Natural Disasters, 2022, 31(4), 144 (in Chinese).
裴强, 程智, 吴聪. 自然灾害学报, 2022, 31(4), 144.
70 Yurdakul Ö, Tunaboyu O, Avşar Ö. Bulletin of Earthquake Engineering, 2018, 16(11), 5279.
71 Nahar M, Billah A, Kamal H R, et al. Engineering Structures, 2019, 194, 161.
72 Qian H, Li Z, Pei J, et al. Composite Structures, 2022, 294, 115782.
73 Qian H, Zhu Y Y, Zhang Y Y, et al. China Civil Engineering Journal, 2023, 56(1), 57 (in Chinese).
钱辉, 祝运运, 张羊羊, 等. 土木工程学报, 2023, 56(1), 57.
74 Chen W H, Feng K, Wang Y, et al. Buildings, 2022, 12(9), 1404.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[5] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[6] 李兴建, 吕佳宁, 姚新宽, 周孟, 李因文, 徐守芳. 动态热机械分析技术在高分子形状记忆效应表征中的应用进展[J]. 材料导报, 2024, 38(22): 23040274-11.
[7] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[8] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[9] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[10] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[11] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[12] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[13] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 21110105-22.
[14] 方思怡, 巴明芳, 许浩锋, 张晨剑, 谢嘉磊, 王志豪. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响[J]. 材料导报, 2023, 37(15): 22020152-9.
[15] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed