Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22050021-6    https://doi.org/10.11896/cldb.22050021
  无机非金属及其复合材料 |
ECC全包裹普通混凝土复合试件的力学性能
康迎杰1,2,3, 郭自利4, 叶斌斌4, 潘鹏4,5,*
1 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 河北省风工程和风能利用工程技术创新中心,石家庄 050043
3 石家庄铁道大学土木工程学院,石家庄 050043
4 清华大学土木工程系,北京 100084
5 清华大学土木工程安全与耐久教育部重点实验室,北京 100084
Mechanical Properties of Ordinary Concrete Confined with Engineered Cementitious Composites (ECC)
KANG Yingjie1,2,3, GUO Zili4, YE Binbin4, PAN Peng4,5,*
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province, Shijiazhuang 050043, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
4 Department of Civil Engineering, Tsinghua University, Beijing 100084, China
5 Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 22644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为综合利用工程用水泥基复合材料(ECC)在力学性能上和普通混凝土在成本上的优势,本工作提出了一种制备ECC全包裹普通混凝土复合试件的方法,通过进行抗压、抗拉及抗弯等试验系统研究了其基本力学性能,并采用数值分析方法对配筋复合梁进行了正截面受弯性能研究。结果表明:在复合试件受力破坏时,ECC和混凝土界面未出现滑移,两种材料黏结可靠实现了协同受力;相对普通混凝土试件而言,复合试件的抗压强度、抗拉强度及抗弯强度均有所提升,尤其是抗弯强度的提升最为显著,对于截面尺寸为100 mm×100 mm的梁,当ECC厚度分别为10 mm和15 mm时,抗弯强度可提高27.4%和57.1%;复合试件具有良好的延性变形能力,破坏后可保持一定的完整性,整体具备高韧性特征;与普通钢筋混凝土梁相比,配筋复合梁有效利用了ECC材料的性能优势,显著提升了配筋梁的承载和变形能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康迎杰
郭自利
叶斌斌
潘鹏
关键词:  工程用水泥基复合材料  复合试件  力学性能  延性破坏  高韧性    
Abstract: Composite specimens of ordinary concrete confined with engineered cementitious composites (ECC) were prepared, considering the comprehensive utilization of the advantage of ECC in mechanical properties and the low price of ordinary concrete. Tests of compressive, tensile, and flexural were carried out, and the basic mechanical properties of composite specimens were systematically studied. The bending behavior of reinforced composite beams was also studied by numerical analysis method. The results show that the interface between ECC and concrete did not slip when the composite specimen was damaged by force, and the two materials bonded reliably to achieve synergistic stresses. Compared with ordinary concrete specimens, the compressive strength, tensile strength and flexural strength of composite specimens are improved, especially the flexural strength are most significantly improved. For the beam with a section of 100 mm×100 mm, the flexural strength is increased by 27.4% and 57.1% respectively, when the thickness of ECC is 10 mm and 15 mm. The composite specimen has considerable ductile deformation ability, and can maintain a certain integrity after failure, so it has the characteristics of high toughness. Compared with ordinary reinforced concrete beams, reinforced composite beams can take advantage of the performance advantages of ECC to significantly improve the bearing and deformation capacity.
Key words:  engineered cementitious composites (ECC)    composite specimen    mechanical property    ductile failure    high toughness
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU528.1  
基金资助: 国家重点研发计划(2019YFC1907204)
通讯作者:  *潘鹏,清华大学工学学士、硕士,日本京都大学工学博士,日本学术振兴会外国特别研究员。现为清华大学土木水利学院教授、博士研究生导师,主要研究方向为韧性城镇与基础设施的建设和评估、高性能减隔震结构。先后在国内外高水平期刊、会议上发表论文100余篇,其中SCI收录60余篇,出版学术专著1本、教材2本。获国家科技进步一等奖、二等奖各1项,其他省部级科研奖励5项。获2015年国家自然科学基金委优秀青年基金,入选2017年教育部长江学者奖励计划特聘教授,2018年科技部中青年科技创新领军人才,2019年国家高层次人才特殊支持计划(万人计划)。panpeng@tsinghua.edu.cn   
作者简介:  康迎杰,博士,讲师。2019年6月于北京工业大学获得工学博士学位,2019年7月至2021年10月在清华大学土木系博士后流动站工作,随后至石家庄铁道大学工作至今。目前主要研究领域为结构韧性提升技术、结构振动控制,主持国家自然科学基金1项、国家重点研发计划项目子课题2项、河北省自然科学基金1项,为河北省自然科学基金创新研究群体成员,发表SCI/EI收录论文20余篇,获发明专利3项。
引用本文:    
康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
KANG Yingjie, GUO Zili, YE Binbin, PAN Peng. Mechanical Properties of Ordinary Concrete Confined with Engineered Cementitious Composites (ECC). Materials Reports, 2024, 38(3): 22050021-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050021  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22050021
1 Gao L, Guo E D, Zhao Y, et al. China Civil Engineering Journal, 2016, 49(3), 98(in Chinese).
高霖, 郭恩栋, 赵颖, 等. 土木工程学报, 2016, 49(3), 98.
2 Xu S L, Li H D. China Civil Engineering Journal, 2008, 41(6), 45 (in Chinese).
徐世烺, 李贺东. 土木工程学报, 2008, 41(6), 45.
3 Li Q H, Xu S L. Engineering Mechanics, 2009, 26(S2), 23 (in Chinese).
李庆华, 徐世烺. 工程力学, 2009, 26(S2), 23.
4 Wang Y C, Hou M J, Yu J T, et al. Materials Reports, 2018, 32(10), 3535 (in Chinese).
王义超, 侯梦君, 余江滔, 等. 材料导报, 2018, 32(10), 3535.
5 Wang Z B, Zhang J, Wang Q. Journal of Building Materials, 2018, 21(2), 216 (in Chinese).
王振波, 张君, 王庆. 建筑材料学报, 2018, 21(2), 216.
6 Hu C H, Gao Y E, Ding W C. Journal of Building Structures, 2013, 34(12), 135 (in Chinese).
胡春红, 高艳娥, 丁万聪. 建筑结构学报, 2013, 34(12), 135.
7 Li Q H, Huang B T, Zhou B M, et al. Journal of Building Structures, 2016, 37(1), 135 (in Chinese).
李庆华, 黄博滔, 周宝民, 等. 建筑结构学报, 2016, 37(1), 135.
8 Liu Z J, Li Y, Wen C G. Journal of Building Materials, 2016, 19(4), 746 (in Chinese).
刘泽军, 李艳, 温丛格. 建筑材料学报. 2016, 19(4), 746.
9 Cao M L, Xu L, Zhang C. Journal of the Chinese Ceramic Society, 2015, 43(5), 632 (in Chinese).
曹明莉, 许玲, 张聪. 硅酸盐学报, 2015, 43(5), 632.
10 Ma H Q, Cheng Y, Wu C. Construction and Building Materials, 2021, 287, 122719.
11 Kan L L, Zhang Z, Zhang L, et al. Engineering Mechanics, 2019, 36(11), 121 (in Chinese).
阚黎黎, 章志, 张利, 等. 工程力学, 2019, 36(11), 121.
12 Chen Y, Zhang H M. Structural Engineers, 2017, 33(3), 208 (in Chinese).
陈杨, 章红梅. 结构工程师, 2017, 33(3), 208.
13 Du W P, Yang C Q, Wu C. Materials Reports, 2021, 35(4), 67 (in Chinese).
杜文平, 杨才千, 王冲. 材料导报, 2021, 35(4), 67.
14 Fan J S, Liu R R, Zhang J, et al. China Civil Engineering Journal, 2021, 54(4), 54 (in Chinese).
樊健生, 刘入瑞, 张君, 等. 土木工程学报, 2021, 54(4), 54.
15 Lu J H, Zhang X F, Xu S L. Shui Li Xue Bao, 2012, 43(S1), 135 (in Chinese).
路建华, 张秀芳, 徐世烺. 水利学报, 2012, 43(S1), 135.
16 Xu S L, Cai X H. China Civil Engineering Journal, 2011, 44(5), 79 (in Chinese).
徐世烺, 蔡新华. 土木工程学报, 2011, 44(5), 79.
17 Li F H, Feng Z H, Deng K L, et al. Engineering Structures, 2019, 195, 223.
18 Zhang Q T, Xiao J Z, Zhang P, et al. Construction and Building Mate-rials, 2019, 229, 117050.
19 Ye B B, Han J G, Pan P, et al. Acta Materiae Compositae Sinica, 2019, 36(1), 245 (in Chinese).
叶斌斌, 韩建国, 潘鹏, 等. 复合材料学报, 2019, 36(1), 245.
20 Ye B B, Zhang Y T, Han J G, et al. Construction and Building Mate-rials, 2019, 226, 899.
21 Jiang S Y, Gong H W, Yao W L, et al. Materials Reports, 2018, 32(12), 4190 (in Chinese).
江世永, 龚宏伟, 姚未来, 等. 材料导报, 2018, 32(12), 4190.
22 Qiao Z, Pan Z F, Leung C K Y, et al. Journal of Southeast University (Natural Science), 2017, 47(4), 724 (in Chinese).
乔治, 潘钻峰, 梁坚凝, 等. 东南大学学报 (自然科学版), 2017, 47(4), 724.
[1] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[2] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[3] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[4] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[5] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[6] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[7] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[8] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[9] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[10] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[11] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[12] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[13] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[14] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[15] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed