Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22050040-6    https://doi.org/10.11896/cldb.22050040
  无机非金属及其复合材料 |
Au@α-Fe2O3纳米棒的制备及光催化性能
林青1,*, 黎水平2, 缪志鹏1, 丁忆1, 梁栋1, 王昭1, 张小娟1
1 金陵科技学院材料工程学院,南京 211169
2 扬州大学土木科学与工程学院,江苏 扬州 225127
Fabrication and Photocatalytic Properties of Au@α-Fe2O3 Nanorods
LIN Qing1,*, LI Shuiping2, MIAO Zhipeng1, DING Yi1, LIANG Dong1, WANG Zhao1, ZHANG Xiaojuan1
1 School of Materials Technology, Jinling Institute of Technology, Nanjing 211169, China
2 College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
下载:  全 文 ( PDF ) ( 8047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过水热法与磁控溅射法结合成功构建了表面均匀沉积纳米Au粒子的α-Fe2O3(Au@α-Fe2O3)纳米棒,纳米Au粒子的负载量和形态分别由磁控溅射时间和热处理温度调控。在沉积5.1%的纳米Au粒子后,因纳米Au的表面等离子体共振(SPR)效应,Au@α-Fe2O3纳米棒在550 nm处出现了一个新的吸收峰,其带隙由2.20 eV变窄至1.95 eV。Au@α-Fe2O3纳米棒的荧光强度和电化学阻抗显著降低,光电流从0.27 μA·cm-2增大至0.45 μA·cm-2。纳米Au粒子既拓宽了Au@α-Fe2O3纳米棒的可见光吸收性能,又抑制了电子-空穴对的复合。与α-Fe2O3纳米棒相比,Au@α-Fe2O3纳米棒的光催化性能变得更加稳定,Au@α-Fe2O3纳米棒的光催化效率提高约一倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林青
黎水平
缪志鹏
丁忆
梁栋
王昭
张小娟
关键词:  纳米金  α-Fe2O3  纳米棒  光催化性能    
Abstract: Au nanoparticles deposited α-Fe2O3 (Au@α-Fe2O3) nanorods with a well-defined structure were fabricated by the hydrothermal method and the magnetron sputtering method. The deposition contents and morphology of Au nanoparticles were regulated by the magnetron sputtering time and the heat treatment temperature, respectively. After deposited 5.1% Au, Au@α-Fe2O3 nanorods show a new absorption peak at 550 nm in the UV-Vis spectrum as the results of the surface plasmon resonances (SPR) of Au nanoparticles, and their bandgap narrows from 2.20 to 1.95 eV. Moreover, the fluorescence intensity and electrochemical impedance of Au@α-Fe2O3 nanorods decrease significantly, while the photocurrent increases from 0.27 to 0.45 μA·cm-2. Au nanoparticles extend the visible-light absorption performance and inhibit the recombination of electron-hole pairs of Au@α-Fe2O3 nanorods. The photocatalytic property of Au@α-Fe2O3 nanorods becomes more stable, and the photocatalytic efficiency of Au@α-Fe2O3 nanorods is about 1 time higher than that of α-Fe2O3 nanorods.
Key words:  Au nanoparticles    α-Fe2O3    nanorods    photocatalytic property
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  O613.6  
基金资助: 国家自然科学基金青年基金项目(51902145);江苏省自然学科基金面上项目(BK20191112)
通讯作者:  *林青,金陵科技学院材料工程学院副教授、硕士研究生导师,入选江苏省“333高层次人才培养工程”。2011年6月,在南京工业大学获得材料学专业工学博士学位;2011年7月~2011年11月,温州医学院助理研究员;2011年12月至今,金陵科技学院材料工程学院先后任讲师、副教授。以第一作者在国内外期刊上发表论文30余篇,申请国家发明专利12项,其中授权7项,转化2项。主要研究方向为纳米材料、功能材料等,主持完成江苏省自然科学基金面上项目和江苏省高校自然科学基金面上项目各1项。lnqing@jit.edu.cn   
引用本文:    
林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
LIN Qing, LI Shuiping, MIAO Zhipeng, DING Yi, LIANG Dong, WANG Zhao, ZHANG Xiaojuan. Fabrication and Photocatalytic Properties of Au@α-Fe2O3 Nanorods. Materials Reports, 2024, 38(3): 22050040-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050040  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22050040
1 Lin Q, Li S, Zhao Q, et al. Desalination and Water Treatment, 2019, 138, 346.
2 Mishra M, Chun D M. Applied Catalysis A, 2015, 498, 126.
3 Aich D, Saha S, Kamilya T. Materials Today, 2021, 43(2), 1154.
4 Mi Y, Cao Y H, Liu X L, et al. Materials Chemistry and Physics, 2013, 143(1), 311.
5 Sahoo R K, Manna A K, Das A, et al. Applied Surface Science, 2022, 577(1), 151954.
6 Zhang S, Ren F, Wu W, et al. Journal of Colloid and Interface Science, 2014, 427, 29.
7 Yu C, Zhou W, Zhu L, et al. Applied Catalysis B, 2016, 184, 1.
8 Wang W, Fang J, Huang X. Applied Surface Science, 2020, 513, 145830.
9 Lin Q, Liu M M, Wu Q H, et al. Chinese Journal of Inorganic Chemistry, 2022, 38(4), 589 (in Chinese).
林青, 刘苗苗, 吴禧航, 等. 无机化学学报, 2022, 38(4), 589.
10 Baruah K, Kumar A, Deb P. Materials Today, 2021, 47(8), 1627.
11 Lin M, Tan H R, Tan J P Y, et al. The Journal of Physical Chemistry C, 2013, 117(21), 11242.
12 Ren B, Xu Y, Zhang C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 170.
13 Ishikawa T, Nagashima A, Kandori K. Journal of Materials Science, 1991, 26(22), 6231.
14 Li D, Hu X, Sun Y, et al. RSC Advances, 2015, 5(34), 27091.
15 Sakthivel R, Das B, Satpati B, et al. Applied Surface Science, 2009, 255(13), 6577.
16 Zhang E, Wang L, Zhang B, et al. Materials Chemistry and Physics, 2018, 214, 41.
17 Wang D, Li Y, Yu B, et al. Advanced Powder Technology, 2021, 32(5), 1653.
18 Sarkodie B, Shen B, Asinyo B, et al. Journal of Colloid and Interface Science, 2022, 608, 2181.
19 Pei F, Feng S, Wu Y, et al. Biosensors and Bioelectronics, 2021, 189, 113373.
20 González A L, Reyes-Esqueda J A, Noguez C. The Journal of Physical Chemistry C, 2008, 112(19), 7356.
21 Bai J, Xu H, Chen G, et al. Materials Chemistry and Physics, 2019, 234, 75.
22 Li L, Liu C, Qiu Y, et al. Journal of Alloys and Compounds, 2017, 696, 980.
23 Shams S, Khan A U, Yuan Q, et al. Journal of Photochemistry and Photobiology B, 2019, 199, 111632.
24 Wang C, Huang Z. Materials Letters, 2016, 164, 194.
25 Cui X, Liu T, Zhang Z, et al. Powder Technology, 2014, 266, 113.
26 Linic S, Christopher P, Ingram D B. Nature Materials, 2011, 10(12), 911.
27 Li D, Yan X, Yang M, et al. Journal of Alloys and Compounds, 2019, 775, 150.
28 Li Y, Zhao J, You W, et al. Nanoscale, 2017, 9(11), 3925.
[1] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[2] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[3] 于杰, 卢锦康, 崔小英, 叶未, 浦蕊, 周晓龙. 首饰用Au基材料颜色及工艺的研究进展[J]. 材料导报, 2022, 36(12): 20100014-7.
[4] 郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 20090180-10.
[5] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[6] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[7] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[8] 赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
[9] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[10] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[11] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[12] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[13] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed