Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8003-8009    https://doi.org/10.11896/cldb.19050190
  无机非金属及其复合材料 |
ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理
于富成1, 南冬梅1, 宋天云1, 王博龙1, 许博宇1, 何玲1, 王姝1, 段红燕2
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学机电工程学院,兰州 730050
Photocatalytic Characteristics of ZnO/Ag2CrO4 Composite and Its Photocatalytic Mechanism with Z-scheme of Electron Transport
YU Fucheng1, NAN Dongmei1, SONG Tianyun1, WANG Bolong1, XU Boyu1, HE Ling1, WANG Shu1, DUAN Hongyan2
1 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法和光沉积法制备了Ag2CrO4纳米片复合的La掺杂ZnO纳米棒(ZnO/Ag2CrO4),并以甲基橙(MO)为降解物,考察了ZnO/Ag2CrO4复合物的光催化性能。结果表明,Ag2CrO4复合使ZnO晶体的本征吸收边产生了红移,并且增强了对可见光的吸收率,从而提高了ZnO对太阳光的利用率,有效地提升了其光催化效率。ZnO/Ag2CrO4复合物的光催化效率在一定范围内随着Ag2CrO4在复合物中含量的增多而增强。当Ag+的光沉积浓度为Zn源浓度的6%时,复合物的光催化效率达到最佳,进一步提高Ag+的光沉积浓度时,则形成Ag2CrO4过量的复合物,导致复合物的光催化效率开始下降。结合UV-Vis和PL测试,推导出复合物的光催化机理中,光生电子的传输机制为Z型传输机制,从而抑制了光生电子-空穴对的复合,延长了激子的寿命,提高了复合物的光催化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于富成
南冬梅
宋天云
王博龙
许博宇
何玲
王姝
段红燕
关键词:  水热法  镧掺杂氧化锌纳米棒  铬酸银纳米片  光催化    
Abstract: The La-doped ZnO nanorods composited with Ag2CrO4 nanosheets (ZnO/Ag2CrO4) were prepared by a hydrothermal method followed by a photo-deposition process. And the photocatalytic properties of the ZnO/Ag2CrO4 composite were examined by a degradation of methyl orange (MO) solution at room temperature. In the investigation of absorption properties of the ZnO/Ag2CrO4 composite, an obvious red-shift of the intrinsic absorption edge of ZnO was observed, which was induced by the composited Ag2CrO4 nano-sheets. Therefore, compared with pure ZnO, the utilization rate of solar light was improved effectively by the composite, which was beneficial to the elevation of the photocatalytic efficiency. Furthermore, the photocatalytic efficiency of the composite increased with the increasing of the content of the Ag2CrO4 nano-sheets in the composite, and the optimum photocatalytic efficiency appeared in the sample prepared with the Ag+ concentration being 6% of Zn source concentration during photo-deposition process. When the Ag+ concentration was further increased, the excess Ag2CrO4 was produced, which led to degradation of photocatalytic efficiency. Based on the measurements of UV-Vis and PL spectra, a Z-type scheme electron transport mechanism was deduced in the ZnO/Ag2CrO4 composite during photocatalytic process, by which the recombination of electron-hole pairs was inhibited, thus the lifetime of excitons was prolonged. Therefore, the photocatalytic efficiency of the composite was dramatically improved.
Key words:  hydrothermal method    La-doped zinc oxide nanorod    silver chromate nanosheets    photocatalysis
                    发布日期:  2020-04-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51665028);甘肃省自然科学基金(1506RJZA107);企事业单位委托科技项目(LZSN-KJ-002;2018040-G;ky2019047)
通讯作者:  yufc@163.com   
作者简介:  于富成,兰州理工大学材料科学与工程学院,副教授。2008年7月毕业于韩国忠南国立大学,研究领域为半导体薄膜功能材料及结构材料的制备及应用,发表SCI及EI论文共30余篇。
引用本文:    
于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
YU Fucheng, NAN Dongmei, SONG Tianyun, WANG Bolong, XU Boyu, HE Ling, WANG Shu, DUAN Hongyan. Photocatalytic Characteristics of ZnO/Ag2CrO4 Composite and Its Photocatalytic Mechanism with Z-scheme of Electron Transport. Materials Reports, 2020, 34(8): 8003-8009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050190  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8003
1 Shet A, Vidya S K. Solar Energy, 2016, 127,67.
2 Zhang Li, Wang Qian, Zhao Qian. Chemical Research and Application, 2018, 30(1),137(in Chinese).
张丽, 王倩, 赵谦. 化学研究与应用, 2018, 30(1),137.
3 Bai Zhiming, Zhang Yinghua. Advanced Materials Industry, 2016(4),55(in Chinese).
白智明, 张英华. 新材料产业, 2016(4),55.
4 Li Cuixia, Jin Haize, Tan Gaowei, et al. China Environmental Science, 2017, 37(2),570(in Chinese).
李翠霞, 金海泽, 谭高伟, 等.中国环境科学, 2017, 37(2),570.
5 Wang Yuxin, Yang Yiqiong, Xi Limin, et al. Materials Letters, 2016, 180, 55.
6 Tabib A, Bouslama W, Sieber B, et al. Applied Surface Science, 2016, 369,1528.
7 Zhao H, Wei D, Ying L. Advanced Composites & Hybrid Materials, 2018, 1(2), 404.
8 Wang H H, Chen X J, Li W T, et al. Talanta, 2018, 176,573.
9 Miao F, Lu X, Tao B, et al. Microelectronic Engineering, 2016, 149, 153.
10 Zhou F, Jing W, Shi J, et al. Ceramics International, 2016, 42(4), 4788.
11 Ahmad R, Tripathy N, Khan M Y, et al. Ceramics International, 2016, 42,13464.
12 Gao Y, Xu J, Shi S, et al. ACS Applied Materials & Interfaces, 2018, 10(13),11269.
13 Singh C P, Rishi K, Ashutosh R, et al. Materials Science in Semiconductor Processing, 2019, 89, 6.
14 Long Jinyan, Wang Wenzhong, Fu Shuyi, et al. Journal of Colloid and Interface Science, 2019, 536,408.
15 Liu Y, Liu H, Zhou H, et al. Applied Surface Science, 2019, 466,133.
16 Yu L, Yu H, Mei C, et al. Catalysis Communications, 2012, 26(35),63.
17 Fan Y, Ma W, Han D, et al. Advanced Materials, 2015, 27(25),3767.
18 Zou X, Dong Y, Li S, et al. Solar Energy, 2018, 169,392.
19 Lv Wenquan, Liu Jie, He Yuan, et al. Ceramics International, 2018, 44,22311.
20 Zhu L, Huang D, Ma J, et al. Ceramics International, 2015, 41(9),12510.
21 Santamaríapérez D, Bandiello E, Errandonea D, et al. Journal of the Faculty of Veterinary Medicine University of Yuzuncu Yll Van, 2013, 117(23),12244.
22 Chaudhary P, Singh P, Kumar V. Optik-International Journal for Light and Electron Optics, 2018, 158, 379.
23 Verma K C, Kotnala R K. Journal of Solid State Chemistry, 2016, 237,216.
24 Xu D, Cheng B, Cao S, et al. Applied Catalysis B: Environmental, 2015, 164,385.
25 Deng Y, Tang L, Zeng G, et al. Journal of Molecular Catalysis A: Chemical, 2016, 421,217.
26 Yu Fucheng, Hu Hailong, Li Haishan, et al. Journal of Lanzhou Universites of Technology, 2018, 44(4),19(in Chinese).
于富成, 胡海龙, 李海山, 等. 兰州理工大学学报, 2018, 44(4),19.
27 Slimi B, Ben Assaker I, Kriaa A, et al. Journal of Solid State Electrochemistry, 2017, 21(5),1259.
28 Lin Jiajun, Li Shengtao, He Jinqiang, et al. Journal of the European Ceramic Society, 2017, 37(11),3537.
29 Kadam A N, Dhabbe R S, Kokate M R, et al. Journal of Materials Science: Materials in Electronics, 2014, 25(4),1889.
30 Xiong D H, Deng Y W, Du Z J, et al. Materials Reports B:Research Papers, 2019, 33(4),1262(in Chinese).
熊德华, 邓砚文, 杜子娟, 等. 材料导报:研究篇, 2019, 33(4),1262.
31 Zeng H, Duan G, Li Y, et al. Advanced Functional Materials, 2010, 20(4),565.
[1] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[2] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[3] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[4] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[5] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[6] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[7] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[10] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[11] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[12] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[13] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[14] 郑会勤. 双核钴化合物分子催化剂光催化分解水析氢性能及机理研究[J]. 材料导报, 2020, 34(12): 12163-12168.
[15] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed