Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11009-11021    https://doi.org/10.11896/cldb.19030036
  材料与可持续发展(三)——环境友好材料与环境修复材料* |
基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展
朱武青1,2, 全海燕2, 彭叔森1, 张敏2, 陈东初2, 户华文2,3,4
1 南昌航空大学材料科学与工程学院,南昌 330063
2 佛山科学技术学院材料科学与能源工程学院,佛山 528000
3 中国科学院广州能源所广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
4 广东省石油与精细化工研究院广东省工业表面活性剂重点实验室,广州 510640
Recent Advances in Mussel-inspired Polydopamine-modified Graphene-based Functional Materials and Their Applications in Waterborne Environmental Remediation
ZHU Wuqing1,2, QUAN Haiyan2, PENG Shusen1, ZHANG Min2, CHEN Dongchu2, HU Huawen2,3,4
1 College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
3 Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
4 Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 6975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球水污染问题日益严峻,而石墨烯具有大比表面积且除污性能优异,可作为水体环境修复的优良材料,但它的表面能高,极易发生团聚,这将会大大降低其比表面积和其他优异的物理化学性质。为此,受天然贻贝及其分泌的粘性蛋白结构所启发,将仿生聚多巴胺(Pdop)用于改性石墨烯可有效解决石墨烯聚集的问题,并能赋予石墨烯新的表面性质和功能,如从疏水表面变成亲水表面、增加活性位点密度以及丰富其可设计性,这也使得Pdop改性石墨烯(Pdop-G)成为当前的一大研究热点,尤其在环境修复领域。
   本文回顾了近三年Pdop-G及其相关材料的多种设计、制备方法,并重点关注了Pdop-G在环境修复应用方面的研究进展,包括三种核心环境修复处理手段(即吸附、膜截留和光催化)。通过总结相关文献可知,Pdop-G及其相关材料在处理各类水体环境污染物方面具有良好的应用潜力,但是要达到商业应用的要求,还有待进一步改善制备工艺,完善后处理等问题。本文充分评述和分析了基于石墨烯化学和贻贝仿生学的各种环境修复材料和技术的优缺点,并提出了未来可尝试的研究方向,以明晰这些材料在环境修复中的应用范围和技术发展路线。本文有望给广大学者在Pdop-G及其相关材料研究方面提供指引,并为新型高性能石墨烯基环境修复材料的设计带来新思路和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱武青
全海燕
彭叔森
张敏
陈东初
户华文
关键词:  仿生聚多巴胺  石墨烯  吸附  膜截留  光催化  环境修复    
Abstract: The global water pollution problem is becoming increasingly serious. Graphene can be a good choice for designing and fabricating various graphene-based functional materials due to its large specific surface area and excellent decontamination performance. However, graphene sheets readily aggregate and agglomerate themselves, causing a loss of their fabulous properties. It is therefore necessary to modify the surface of graphene to make it dispersible in various water media. Inspired from naturally occurring mussel and its excreted adhesive protein, the chemical modifications of graphene can thus be efficiently achieved based on such a natural way. The resulting polydopamine (Pdop)-modified graphene (Pdop-G) exhibits excellent dispersibility, facilitating its further manufacturing through facile solution-based routes. Such modification also enables the generation of more active sites for diverse applications, and a versatile platform can be provided as well due to the modification. As a consequence, Pdop-G has captured the focus of much attention for various applications, especially environmental remediation.
This paper reviews the design and preparation methods of Pdop-G and related materials over the past three years, and special attention is placed on the research status in environmental remediation applications using a diversity of Pdop-G-based functional materials, mainly including three critical strategies (i.e., adsorption, membrane filtration and photocatalysis). This literature review shows that Pdop-G and related materials have great application potential in dealing with water contaminants, but it is necessary to improve the preparation and manufacturing processes, post-treatment strategies, and other conditions to achieve commercial applications. This review paper sufficiently comments on the merits and demerits of using graphene chemistry, mussel-inspired biomimetic chemistry, and the corresponding technologies for environmental remediation applications, and also suggests the research directions on which future efforts can be put, in order to clarify the scope of applications and the routes to developing technologies. We hope this review paper can provide a guide for researchers when concerning the bio-inspired modification of graphene and the resulting modified graphene-based functional materials for various applications, especially environmental remediation. It is also highly expected that innovative ideas and new research directions will be obtained as a result of this review contribution.
Key words:  polydopamine    graphene    adsorption    membrane filtration    photocatalysis    environmental remediation
                    发布日期:  2020-05-13
ZTFLH:  TQ042  
基金资助: 国家自然科学基金青年科学基金(51702050);广东省教育厅特色创新基金(2017KTSCX188);广东省新能源和可再生能源研究开发与应用重点实验室开放基金(Y807s31001);广东省工业表面活性剂重点实验室开放基金(GDLS-01-2019);佛山科学技术学院特聘教授
通讯作者:  huawenhu@126.com   
作者简介:  朱武青,2017年6月毕业于南昌航空大学,获得理学学士学位。现为南昌航空大学材料科学与工程学院和佛山科学技术学院材料科学与能源工程学院联合培养的硕士研究生,在户华文教授、陈东初教授和彭叔森博士共同指导下进行研究。目前主要研究领域为仿生合成石墨烯基功能材料及其环境修复应用。
户华文,佛山科学技术学院材料科学与能源工程学院副教授、硕士研究生导师。2015年9月在中国香港理工大学材料科学专业取得博士学位,2015—2016年继续在中国香港理工大学进行博士后研究工作,2016年7月入职佛山科学技术学院,并于2018年入选广东省珠江人才计划青年拔尖人才,主要从事低维功能材料及其能源、催化、传感和环境修复应用研究。近年来,在低维纳米材料相关领域发表论文60余篇,包括Advanced Functional Materials、Journal of Materials Chemistry A、Biosensors and Bioelectronics、Nano Research、Chemical Communications、ACS Sustainable Chemistry and Engineering和ACS Applied Nano Materials等,论文共被引1 580余次,h指数为22,i10指数为35。
引用本文:    
朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
ZHU Wuqing, QUAN Haiyan, PENG Shusen, ZHANG Min, CHEN Dongchu, HU Huawen. Recent Advances in Mussel-inspired Polydopamine-modified Graphene-based Functional Materials and Their Applications in Waterborne Environmental Remediation. Materials Reports, 2020, 34(11): 11009-11021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030036  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11009
1 Hu H, Liang W, Zhang Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(3), 3830.
2 Hashemi H, Hajizadeh Y, Amin M M, et al. Desalination and Water Treatment, 2015, 57(16), 7149.
3 Tural B, Ertas E, Tural S. Desalination and Water Treatment, 2016, 57(54), 26153.
4 Mailler R, Gasperi J, Coquet Y, et al. Journal of Environmental Chemical Engineering, 2016, 4(1), 1102.
5 Kim S C. Journal of Industrial and Engineering Chemistry, 2016, 38, 93.
6 Zou Y, Wang X, Khan A, et al. Environmental Science & Technology, 2016, 50(14), 7290.
7 Hokkanen S, Bhatnagar A, Sillanpaa M. Water Research, 2016, 91, 156.
8 López-López C, Martín-Pascual J, Leyva-Díaz J C, et al. Desalination and Water Treatment, 2015, 57(30), 13987.
9 Choi Y, Koo M S, Bokare A D, et al. Environmental Science & Technology, 2017, 51(7), 3973.
10 Wang N N, Zhao Q, Zhang A L. RSC Advances, 2017, 7(44), 27619.
11 Rozas O, Baeza C, Nunez K, et al. Science of the Total Environment, 2017, 590-591, 430.
12 Martín de Vidales M J, Millán M, Sáez C, et al. Separation and Purification Technology, 2017, 175, 428.
13 Santos M S F, Alves A, Madeira L M. Water Research, 2016, 88, 39.
14 Babuponnusami A, Muthukumar K. Journal of Environmental Chemical Engineering, 2014, 2(1), 557.
15 Wang X, Hu H, Yang Z, et al. Catalysis Communications, 2015, 72, 81.
16 Hu H, Chang M, Wang X, et al. Journal of Materials Science, 2017, 52(16), 9922.
17 Wang S, Guan Y, Wang L, et al. Applied Catalysis B: Environmental, 2015, 168-169, 448.
18 Hu H, Xin J, Hu H, et al. Molecules, 2014, 19(6), 7459.
19 Chang M, Hu H, Quan H, et al. Beilstein Journal of Nanotechnology, 2019, 10, 735.
20 Yang D, Deng L, Zheng D, et al. Journal of Environment Management, 2016, 168, 87.
21 Ni L, Zheng W, Zhang Q, et al. Preventive Veterinary Medicine, 2016, 133, 42.
22 Yan C, Zhu L, Wang Y. Applied Energy, 2016, 178, 9.
23 Hu H, Zavabeti A, Quan H, et al. Biosensors and Bioelectronics, 2019, 142, 111573.
24 Hu H, Xin J H, Hu H. Journal of Materials Chemistry A, 2014, 2(29), 11319.
25 Hu H W, Chang M L, Zhang M, et al. Journal of Materials Science, 2017, 52(14), 8650.
26 Hu H, Allan C C K, Li J, et al. Nano Research, 2014, 7(3), 418.
27 Xu L Q, Yang W J, Neoh K G, et al. Macromolecules, 2010, 43(20), 8336.
28 Kang S M, Park S, Kim D, et al. Advanced Functional Materials, 2011, 21(1), 108.
29 Kim I H, Yun T, Kim J E, et al. Advanced Materials, 2018, 30(40), 1870298.
30 Hu H W, Xin J H, Hu H. ChemPlusChem, 2013, 78(12), 1483.
31 Dong M M, Liu C L, Li S Y, et al. Sensors and Actuators B-Chemical, 2016, 232, 234.
32 Li C, Huang Y, Chen J J. Materials Letters, 2015, 154, 136.
33 Ruan M N, Yang D, Guo W L, et al. Materials Letters, 2018, 219, 109.
34 Ma J X, Yang H, Li S, et al. RSC Advances, 2015, 5(118), 97520.
35 Gao H, Sun Y, Zhou J, et al. ACS Applied Materials & Interfaces, 2013, 5(2), 425.
36 Cheng C, Nie S, Li S, et al. Journal of Materials Chemistry B, 2013, 1(3), 265.
37 Tian Y, Cao Y, Wang Y, et al. Advanced Materials, 2013, 25(21), 2980.
38 Han L, Sun H, Tang P, et al. Biomaterials Science, 2018, 6(3), 538.
39 Jing X, Mi H Y, Peng X F, et al. Carbon, 2018, 136, 63.
40 Kang D, Shin Y E, Jo H J, et al. Particle & Particle Systems Characte-rization, 2017, 34(9), 1600382.
41 Hu X, Qi R, Zhu J, et al. Journal of Applied Polymer Science, 2014, 131(2), 39754.
42 Gorle D B, Kulandainathan M A. RSC Advances, 2016, 6(24), 19982.
43 Miao J, Liu H, Li W, et al. Langmuir, 2016, 32(21), 5365.
44 Hu H, Zhang Y, Qiao Y, et al. Applied Surface Science, 2020, 508, 144835.
45 Hu H, Xin J H, Hu H, et al. Nano Research, 2015, 8(12), 3992.
46 Hu H, Wang X, Lee K I, et al. Scientific Reports, 2016, 6, 31815.
47 Hu H, Quan H, Zhong B, et al. ACS Applied Nano Materials, 2018, 1(11), 6502.
48 Luan V H, Bae D, Han J H, et al. Composites Part B-Engineering, 2018, 134, 141.
49 Ma L K, Huang L L, Zhang Y Z, et al. RSC Advances, 2018, 8(1), 153.
50 Masoudipour E, Kashanian S, Maleki N. Chemical Physics Letters, 2017, 668, 56.
51 Chu K, Wang F, Tian Y, et al. Electrochimica Acta, 2017, 231, 557.
52 He C S, Li L, Zhang T T, et al. Materials Research Bulletin, 2016, 84, 118.
53 Li W, Shang T, Yang W, et al. ACS Applied Materials & Interfaces, 2016, 8(20), 13037.
54 Cui X Q, Fang X, Zhao H, et al. Analytical Methods, 2017, 9(36), 5322.
55 Yang H, Zou H, Chen M, et al. Inorganic Chemistry Frontiers, 2017, 4(11), 1881.
56 Zhu W, Lin Y, Kang W, et al. Applied Surface Science, 2020, 512, 145717.
57 Cheng J, Liu H Y, Zhao B J, et al. Journal of Bioactive and Compatible Polymers, 2015, 30(3), 289.
58 Jia Z F, Li H Q, Zhao Y, et al. Journal of Materials Science, 2017, 52(19), 11620.
59 Zhu J, Yuan L, Guan Q, et al. Chemical Engineering Journal, 2017, 310, 134.
60 Li L, Li B, Zhang J. Journal of Materials Chemistry A, 2016, 4(2), 512.
61 Casa M, Sarno M, Liguori R, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(2), 1176.
62 Wan S, Xu F, Jiang L, et al. Advanced Functional Materials, 2017, 27(10), 1605636.
63 Meng F, Wei W, Chen J, et al. RSC Advances, 2015, 5(122), 101121.
64 Tan F, Liu M, Ren S. Scientific Reports, 2017, 7(1), 5735.
65 Sun W, Wan L, Li X, et al. Journal of Materials Chemistry A, 2016, 4(28), 10948.
66 Luo J, Zhao F Q, Fei X M, et al. Chemical Engineering Journal, 2016, 293, 171.
67 Liu Y, Ai K, Lu L. Chemical Reviews, 2014, 114(9), 5057.
68 Ning N, Ma Q, Liu S, et al. ACS Applied Materials & Interfaces, 2015, 7(20), 10755.
69 Cai W, Wang J, Pan Y, et al. Journal of Hazardous Materials, 2018, 352, 57.
70 Xing R, Wang W, Jiao T, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(6), 4948.
71 Yu J, Lin Y H, Yang L, et al. Advanced Healthcare Materials, 2016, 6(2), 1600804.
72 Liu P, Bai F Q, Lin D W, et al. Journal of Electroanalytical Chemistry, 2016, 764, 104.
73 Zhao X, Mai Y, Chen D, et al. Polymers, 2019, 11(10), 1635.
74 Kaffash A, Zare H R, Rostami K. Analytical Methods, 2018, 10(23), 2731.
75 Fei X, Liu Z, Li Y, et al. Journal of Alloys and Compounds, 2017, 725, 1084.
76 Hu H, Wang X, Miao D, et al. Chemical Communications, 2015, 51(93), 16699.
77 Xu F, Xie S, Cao R, et al. Sensors and Actuators B: Chemical, 2017, 243, 609.
78 Zhang Z, Mwadini M A, Chen Z. Journal of Separation Science, 2016, 39(20), 4011.
79 Zhang X, Li X, Zhang S, et al. ACS Applied Nano Materials, 2018, 1(8), 3878.
80 Hu H, Xin J H, Hu H, et al. Carbohydrate Polymers, 2013, 91(1), 305.
81 Dong Z, Wang D, Liu X, et al. Journal of Materials Chemistry A, 2014, 2(14), 5034.
82 Huang T, Dai J, Yang J H, et al. Diamond and Related Materials, 2018, 86, 117.
83 Deng Y, Zhang R, Li D, et al. Journal of Separation Science, 2018, 41(9), 2046.
84 Li Y, Zhao R, Chao S, et al. Chemical Engineering Journal, 2018, 344, 277.
85 Chen P P, Zhang H P, Ding J, et al. Carbohydrate Polymers, 2017, 162, 62.
86 Wang C, Yin J, Wang R, et al. Nanomaterials, 2019, 9(1), 116.
87 Feng J, Sun M, Han S, et al. Journal of Separation Science, 2019, 42(12), 2163.
88 Sun S, Jiao T, Xing R, et al. RSC Advances, 2018, 8(38), 21644.
89 Sun D T, Peng L, Reeder W S, et al. ACS Central Science, 2018, 4(3), 349.
90 Wan Q, Liu M, Xie Y, et al. Journal of Materials Science, 2016, 52(1), 504.
91 He K, Zeng G, Chen A, et al. Composites Part B: Engineering, 2019, 161, 141.
92 He K, Chen G, Zeng G, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89, 77.
93 Ye Q, Liu L, Chen Z, et al. Journal of Separation Science, 2016, 39(9), 1684.
94 Zeng G, He Y, Ye Z, et al. Industrial & Engineering Chemistry Research, 2017, 56(37), 10472.
95 Liu Y, Tu W, Chen M, et al. Chemical Engineering Journal, 2018, 336, 263.
96 Liu Z, Wu W, Liu Y, et al. Separation and Purification Technology, 2018, 199, 37.
97 Zhu J, Wang J, Uliana A A, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28990.
98 Ma J, He Y, Zeng G Y, et al. Polymers for Advanced Technologies, 2018, 29(2), 941.
99 Wang J, Huang T, Zhang L, et al. Environmental Technology, 2017, 39, 3055.
100 Li F, Yu Z, Shi H, et al. Chemical Engineering Journal, 2017, 322, 33.
101 Hu H W, Xin J H, Hu H, et al. Journal of Materials Chemistry A, 2015, 3(21), 11157.
102 Giannakopoulou T, Papailias I, Todorova N, et al. Chemical Engineering Journal, 2017, 310, 571.
103 Wang X, Chen D, Zhang M, et al. Polymers, 2019, 11(11), 1860.
104 Mao W X, Lin X J, Zhang W, et al. Chemical Communications (Cambridge, England), 2016, 52(44), 7122.
105 Kim J H, Lee M, Park C B. Angewandte Chemie, International Edition in English, 2014, 53(25), 6364.
106 Oh C E, Park Y H, Kim S, et al. Chemistry Letters, 2015, 44(8), 1068.
107 Yu Z, Li F, Yang Q, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(9), 7840.
108 Zhu M, Muhammad Y, Hu P, et al. Applied Catalysis B-Environmental, 2018, 232, 182.
109 Kang W, Quan H, Huang Y, et al. Hans Journal of Nanotechnology, 2019, 9(1), 17.
110 Zhang Y, Deng L, Hu H, et al. Sustainable Energy & Fuels, 2020, DOI: 10.1039/C9SE00834A.
111 Yu Z, Min X, Li F, et al. Polymers for Advanced Technologies, 2019, 30(1), 101.
112 Huo R, Yang X L, Yang J Y, et al. Materials Research Bulletin, 2018, 98, 225.
113 Ding K, Wang W, Yu D, et al. Applied Surface Science, 2018, 454, 101.
114 Wang M, Cui Z, Yang M, et al. Journal of Colloid and Interface Science, 2019, 544, 1.
115 Lv Y R, Huo R, Yang S Y, et al. Separation and Purification Technology, 2018, 197, 281.
116 Xie X, Mao C, Liu X, et al. ACS Central Science, 2018, 4(6), 724.
117 Zhang R, Cai Y, Zhu X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 68.
118 Wang Z, Li J, Tang F, et al. RSC Advances, 2017, 7(38), 23535.
119 Hu H, Xin J H, Hu H, et al. Applied Catalysis A: General, 2015, 492, 1.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[3] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[4] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[5] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[6] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[7] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[8] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[9] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[10] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[11] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[12] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[13] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[14] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[15] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed