Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11022-11028    https://doi.org/10.11896/cldb.19030095
  材料与可持续发展(三)——环境友好材料与环境修复材料* |
累托石基复合光催化材料研究进展
杨威, 郭盛, 陈金毅
武汉工程大学化学与环境工程学院,武汉430205
Research Progress on Rectorite-based Photocatalysts
YANG Wei, GUO Sheng, CHEN Jinyi
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology, Wuhan 430205, China
下载:  全 文 ( PDF ) ( 2732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化是一种利用太阳能将有机污染物分解为水和二氧化碳的技术,该技术还可以用于催化制氢、还原CO2制备燃料以及杀菌,在应对全球环境污染和能源短缺问题方面起着至关重要的作用。光催化技术的关键在于设计高效、廉价且能循环使用的光催化剂。传统光催化剂存在太阳能利用率低、量子产率低以及光化学稳定性不足等问题,使得光催化技术的推广受到限制。近年来,研究者尝试了许多提高半导体光催化剂活性的方法,包括形貌调控、金属离子或非金属离子掺杂、半导体异质复合、表面贵金属沉积、负载以及开发新的光催化剂等。
   光催化反应主要是发生在催化剂表面的固-液反应,因而需要催化剂具有较好的吸附性能和较高的表面活性。而许多光催化剂比表面积较小、吸附能力有限,导致其光催化效率相对较低。另外,大多数光催化剂易团聚、难以分离回收,阻碍了其大规模的工业应用。近年来,许多学者将光催化剂负载到廉价的粘土材料累托石上,利用累托石较大的比表面积、优越的离子交换性能和稳定的结构解决吸附和分离问题,进而提高催化剂的光催化效率。同时,累托石独特的层状结构能够为光催化反应提供良好的反应场所。
   研究者们通过改进或优化制备工艺,成功制备出累托石负载TiO2、Bi2O3、Bi2WO6、BiOI、Bi2NbO5F、ZnO、Ag3PO4、In2O3、CdS、Cu2O和g-C3N4等复合材料。研究发现,引入累托石载体可以有效提升光催化剂的吸附性能,抑制光生电子和空穴的复合,极大地改善光腐蚀问题,提高光催化材料对可见光的吸收能力。
   本文系统综述了累托石基半导体复合材料在光催化领域的研究进展,介绍了累托石基半导体复合材料的制备工艺,重点阐述了累托石对光催化剂性能提升的作用机制。此外,本文还讨论了制备和反应条件对复合材料光催化活性的影响。最后展望了未来累托石应用于光催化领域的方向,以期为累托石矿物材料在光催化领域的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨威
郭盛
陈金毅
关键词:  光催化  累托石基复合材料  降解机理  粘土矿物  离子交换  有机污染物    
Abstract: Photocatalysis plays a vital role in counteracting worldwide environmental pollution and energy shortage because it can use solar energy for photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide storage and disinfection. The key of photocatalytic technology is to design an efficient, cost-effective and recyclable photocatalysts. However, the photocatalytic efficiency of traditional photoca-talysts is limited by their poor utilization of solar energy, low quantum yield and insufficient photochemical stability. In recent years,many methods have been developed to enhance the photocatalytic activity of semiconductor photocatalysts, including morphological control, metal or non-metal doping,heterojunction design, noble metal deposition, loading and developing novel photocatalysts.
Photocatalytic processes are mainly solid-liquid reactions on the surface,thus better adsorption performance and higher surface activity are highly desirable for photocatalysts. However, the small specific surface area and poor adsorption capacity lead to the low efficiency of many photocatalysts. In addition, most photocatalysts tend to agglomerate and difficult to separate and recover, which hinder their large-scale applications.In the last decades, many efforts have been devoted to fabricating rectorite-based photocatalysts,the large specific surface area, excellent ion exchange performance and stable structure of rectorite making it possible to solve the problems of poor adsorption and separation of conventional photocatalysts, thus improve photocatalytic efficiency.Additionally, the unique layered structure of rectorite may facilitate the photocatalytic reactions.
Till now,numerous cost-effective, highly efficient and stable rectorite-based photocatalysts such as rectorite-supported TiO2,Bi2O3,Bi2WO6,BiOI,Bi2NbO5F,ZnO,Ag3PO4,In2O3,CdS,Cu2O and g-C3N4 have been successfully synthesized. It was found that the introduction of rectorite in the composite could effectively enhance the adsorption performance,inhibit the combination of photogenerated electrons and holes,depress photo corrosion and increase the visible light utilization of the catalysts, which promoted the practical applications of rectorite-based photocatalysts in environmental field.
This article systematically reviews the research progress of rectorite-based composites in photocatalytic field, the preparation process of the rectorite-based photocatalysts has been summarized, and special emphasis is given to the mechanism of rectorite for the enhanced photocatalytic performance. Moreover, the influences of preparation and reaction conditions on the catalytic activities of the rectorite-based photocatalysts are elaborated. Finally, the development prospects of rectorite-based photocatalytic composites are given, which may provide insights into the applications of rectorite-based materials in photocatalytic field.
Key words:  photocatalysis    rectorite-based photocatalysts    degradation mechanism    clay mineral    ion exchange    organic contaminants
                    发布日期:  2020-05-13
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51604194;51374157);武汉工程大学研究生教育创新基金(CX2018145);国家留学基金(201808420137)
通讯作者:  guoshengwit@163.com   
作者简介:  杨威,2017年毕业于华北理工大学,获得工学学士学位,现为武汉工程大学化学与环境工程学院硕士研究生,在陈金毅教授和郭盛副教授的指导下开展研究。目前主要研究方向为粘土矿物材料的改性及其在水污染控制中的应用。
郭盛,武汉工程大学化学与环境工程学院副教授、硕士研究生导师。2015年在武汉理工大学资源与环境工程学院环境工程专业取得博士学位,2018年12月至今在新加坡南洋理工大学环境和水资源研究所进行博士后研究工作。主要研究方向:新型绿色环境材料的制备、光催化协同Fenton/PMS活化等高级氧化技术(AOPs)以及3D打印材料处理难降解有机废水等。近年来,在环境催化与吸附领域发表SCI论文20余篇,包括Applied Catalysis B: Environmental、Carbon、Water Research、Chemical Engineering Journal、Journal of Colloid and Interface Science、Ultrasonics Sonochemistry等。
陈金毅,武汉工程大学化学与环境工程学院院长,教授,教育部新世纪优秀人才支持计划入选者,湖北省新世纪高层次人才工程第三层次入选,湖北省化工环境污染控制工程技术研究中心主任。2007年在武汉大学资源与环境科学学院取得博士学位。主要研究方向包括水污染控制技术、新型环境功能材料、生态环境规划等领域。近来年在国内外重要学术刊物上发表论文50余篇,其中SCI、EI收录10余篇。
引用本文:    
杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
YANG Wei, GUO Sheng, CHEN Jinyi. Research Progress on Rectorite-based Photocatalysts. Materials Reports, 2020, 34(11): 11022-11028.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030095  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11022
1 Fujishima A, Honda K. Nature, 1972, 238(5358),37.
2 Hao R A, Cao S W, Yu J G. Acta Physico-Chimica Sinica, 2016, 32(12),2842 (in chinese).
赫荣安, 曹少文, 余家国.物理化学学报, 2016, 32(12),2842.
3 Yu J G, Xu D F. Journal of the Chinese Ceramic Society. 2017, 45(9),1240 (in Chinese).
余家国, 许第发. 硅酸盐学报, 2017, 45(9),1240.
4 Feng F, Li C, Jian J, et al. Chemical Engineering Journal, 2019, 368(3),959.
5 Wang X, Liu G, Wang L, et al.Advanced Energy Materials, 2012, 2(1),42.
6 Zhou Y, Zhang Y, Lin M, et al.Nature Communications, 2015, 6,8340.
7 Qi K Z, Chen B, Yu J G. Chinese Journal of Catalysis, 2017, 38(12),1937 (in Chinese).
戚克振, 程蓓, 余家国. 催化学报, 2017, 38(12),1937.
8 Wang C L, Li F, Yang K, et al. Materials Reports A:Review Papers,2018, 32(11),3349 (in Chinese).
王春来, 李钒, 杨焜, 等. 材料导报:综述篇, 2018, 32(11),3349.
9 Deng L J, Xie Y, Zhang G K. Chinese Journal of Catalysis, 2017, 38(2),379 (in Chinese).
邓丽娟, 谢毅, 张高科. 催化学报, 2017, 38(2),379.
10 Tan G J, Ren X C, Wang Z, et al. Chinese Journal of Environmental Engineering, 2017, 11(4),2313 (in Chinese).
谭光杰, 任学昌, 王拯, 等. 环境工程学报, 2017, 11(4), 2313.
11 Xiao X, Zhu W W, Liu Q Y, et al. Environmental Science & Technology, 2016, 50(21),11895.
12 Kutláková K M, Tokarský J, Kovárˇ P, et al. Journal of Hazardous Materials, 2011, 188(1-3),212.
13 Jin Z, Duan W, Duan W, et al.Applied Catalysis A: General, 2016, 517,129.
14 Hu J L, Qian H S, Li J J, et al.Particle & Particle Systems Characterization, 2013, 30(4),306.
15 Kumar A, Khan M, Zeng X, et al.Chemical Engineering Journal, 2018, 353,646.
16 Zhang Y, Deng L, Zhang G, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1-3),137.
17 Xiao J R, Peng T Y, Ke D N, et al.Journal of Functional Materials, 2007, 38(7),1110 (in Chinese).
肖江蓉, 彭天右, 柯丁宁, 等. 功能材料, 2007, 38(7),1110.
18 Zhang Y, Guo Y, Zhang G, et al.Applied Clay Science, 2011, 51(3),335.
19 Zhang Z Q.Journal of Wuhan Institute of Chemical Technology, 2004, 26(3),28 (in Chinese).
张泽强. 武汉化工学院学报, 2004, 26(3),28.
20 Deng D M, Jiang Y J, Gan F X, et al.Journal of Wuhan University (Natural Science Edition), 2007, 53(2),189 (in Chinese).
邓德明, 姜毅俊, 甘复兴, 等. 武汉大学学报 (理学版), 2007, 53(2), 189.
21 Zhang X, Wu P X, Wu J H, et al.Acta Scientiae Circumstantiae, 2014, 34(3), 612 (in Chinese).
张星, 吴平霄,吴锦华, 等. 环境科学学报, 2014, 34(3), 612.
22 Asahi R, Morikawa T, Ohwaki T, et al.Science, 2001, 293(5528), 269.
23 Khan S U M, Al-Shahry M, Ingler W B.Science, 2002, 297(5590),2243.
24 Lin X J, Sun M X, Hu M Y, et al.Materials Reports B:Research Papers, 2018, 32(4),1213 (in Chinese).
林小靖, 孙明轩, 胡梦媛, 等. 材料导报:研究篇, 2018, 32(4),1213.
25 Ding Z M, Guo S, Wu X, et al.Functional Materials Letters, 2018, 11(4),1.
26 Guo S, Yang Z, Wen Z, et al.Journal of Colloid and Interface Science, 2018, 532,441.
27 Chen X, Burda C.Journal of the American Chemical Society, 2008, 130(15),5018.
28 Boningari T, Inturi S N R, Suidan M, et al.Chemical Engineering Journal, 2018, 350,324.
29 Bu X Z, Zhang G K, Gao Y Y, et al.Microporous and Mesoporous Mate-rials, 2010, 136(1-3),132.
30 Huang Z, Wu P, Gong B, et al.Applied Clay Science, 2017, 142,128.
31 Bu X, Wang Y, Li J, et al.Journal of Alloys and Compounds, 2015, 628,20.
32 Bukowski B, Deskins N A.Physical Chemistry Chemical Physics, 2015, 17(44),29734.
33 Long M, Qin Y, Chen C, et al.The Journal of Physical Chemistry C, 2013, 117(32),16734.
34 Chen H, Deng D M, Li S, et al.Journal of Wuhan University (Natural Science Edition), 2016, 62(1),85 (in Chinese).
陈泓, 邓德明, 李硕, 等. 武汉大学学报 (理学版), 2016, 62(1),85.
35 Dong F, Li Q, Sun Y, et al.ACS Catalysis, 2014, 4(12),4341.
36 Wu S, Fang J, Xu W, et al.Journal of Molecular Catalysis A: Chemical, 2013, 373,114.
37 Luo S, Chen J, Huang Z, et al.ChemCatChem, 2016, 8(24),3786.
38 Wang L, Wang Z, Zhang L, et al.Chemical Engineering Journal, 2018, 352,665.
39 Guo Y, Zhang G, Gan H.Journal of Colloid and Interface Science, 2012, 369(1),323.
40 Wu S, Fang J, Hong X, et al.Dalton Transactions, 2014, 43(6),2611.
41 Chen Y, Fang J, Lu S, et al.Materials Research Bulletin, 2015, 64,97.
42 Wang J, Fan J, Li J, et al.Ultrasonics Sonochemistry, 2018, 48,404.
43 Li S, Zhou P, Zhang W, et al.Journal of Alloys and Compounds, 2014, 616,227.
44 Guo Y, Li L, Li Y, et al.Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2),883.
45 Yi Z, Ye J, Kikugawa N, et al.Nature Materials, 2010, 9(7),559.
46 Ma X, Lu B, Li D, et al.The Journal of Physical Chemistry C, 2011, 115(11),4680.
47 Umezawa N, Shuxin O, Ye J.Physical Review B, 2011, 83(3),035202.
48 Guo Y, Yu W, Chen J, et al. Ultrasonics Sonochemistry, 2017, 34,831.
49 Dai Y M, Lee W W, Lin W C, et al.Journal of the Chinese Chemical Society, 2013, 60(12),1415.
50 Bu X, Wu B, Long T, et al.Journal of Alloys and Compounds, 2014, 586,202.
51 Xiao J, Peng T, Ke D, et al.Physics and Chemistry of Minerals, 2007, 34(4),275.
52 Xiao J, Peng T, Dai K, et al.Journal of Solid State Chemistry, 2007, 180(11),3188.
53 Lu Y, Chang P R, Zheng P, et al.Chemical Engineering Journal, 2014, 255,49.
54 Yang Y, Zhang G, Xu W. Journal of Colloid and Interface Science, 2012, 376(1),217.
55 Sun Z, Zhang X, Zhu R, et al.Materials, 2018, 11(12),2452.
56 Deng D M, Li F G, Wang J W, et al.Journal of Wuhan University (Natural Science Edition), 2006, 52(6),713 (in Chinese).
邓德明, 李富贵, 王家文, 等. 武汉大学学报 (理学版), 2006, 52(6),713.
57 Chen Y, Fang J, Lu S, et al.Journal of Hazardous Materials, 2015, 297,278.
58 Xiao J R, Peng T Y, Zhou S Y, et al.Chemical Journal of Chinese Universities, 2011, 32(12),2823 (in Chinese).
肖江蓉, 彭天右, 周胜银, 等. 高等学校化学学报, 2011, 32(12),2823.
59 Zhang L, Shi T X, Sun J S, et al.Chinese Journal of Environmental Engineering, 2007, 1(6), 35 (in Chinese).
张蕾, 石眺霞, 孙家寿, 等. 环境工程学报, 2007, 1(6),35.
60 Xie Y, Zhang G K, Zhu C S, et al.Industrial Safety and Environmental Protection, 2004, 30(7),28 (in Chinese).
谢毅, 张高科, 祝春水, 等. 工业安全与环保, 2004, 30(7),28.
61 Xu J, Fu L C, Zheng J D, et al.Environmental Pollution and Control, 2017(1),88 (in Chinese).
徐杰, 付林晨, 郑建东, 等. 环境污染与防治, 2017(1),88.
62 Chen J Y, Li N, Li J, et al.Acta Physico-Chimica Sinica, 2011(7),932 (in Chinese).
陈金毅, 李念, 李晶, 等.物理化学学报, 2011(7),932.
63 Chen Y, Yu F, Liu Y T, et al.Materials Reports B:Research Papers, 2018, 31(12), 123 (in Chinese).
陈雨, 余飞, 刘禹彤, 等. 材料导报:研究篇, 2018, 31(12),123.
64 Guo S, Zhang G, Guo Y, et al.Carbon, 2013, 60,441.
65 Xu N C, Shi D D, Dang L, et al.Materials Reports B:Research Papers, 2018, 31(8),38 (in Chinese).
许乃才, 史丹丹, 党力, 等. 材料导报:研究篇, 2018, 31(8), 38.
[1] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[2] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[3] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[4] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[7] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[8] 郑会勤. 双核钴化合物分子催化剂光催化分解水析氢性能及机理研究[J]. 材料导报, 2020, 34(12): 12163-12168.
[9] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[10] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[11] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[12] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[13] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[14] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[15] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed