Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11029-11034    https://doi.org/10.11896/cldb.19050149
  材料与可持续发展(三)——环境友好材料与环境修复材料* |
生物炭中溶解性炭黑的释放及环境效应
彭红波1,2, 杨东1, 高鹏3, 任欣1, 牛一帆1, 吴敏2,3
1 昆明理工大学农业与食品学院,昆明 650500
2 云南省土壤固碳与污染控制重点实验室,昆明 650500
3 昆明理工大学环境科学与工程学院,昆明 650500
Releasing and the Environmental Implications of Dissolved Black Carbon from Biochars
PENG Hongbo1,2, YANG Dong1, GAO Peng3, REN Xin1, NIU Yifan1, WU Min2,3
1 Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming 650500, China
2 Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
3 Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 2247KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物炭是一种价廉高效的吸附剂,可以通过农业废弃物或者其他固体生物质在低温下热解制得。由于生物炭具有多孔结构、较大的比表面积和阳离子交换容量、丰富的活性官能团等性质,可以吸附多种污染物,在固定重金属以及土壤中的碳循环、碳固定、土壤改良中起到了重要作用。生物炭的组分较为复杂,包括溶解性有机质、溶解性炭黑(Dissolved black carbon,DBC)、无机矿物等。其中,DBC在生物炭中的含量较高,且其含有羧基、酚羟基等多种官能团,可以和污染物发生强相互作用,但DBC的性质对污染物的吸附、迁移转化等行为产生的影响尚有待深入研究。此外,DBC作为一种相对独立的胶体颗粒,除含有大量的含氧官能团外,还具有高度芳香化、脂肪化的结构。因此,DBC进入土壤后可以与无机矿物颗粒发生相互作用,形成的有机-无机复合体能使其在土壤中稳定下来,也可能对土壤团聚体的形成有重要促进作用,但目前这些过程还未引起研究者的关注。与常规溶解性有机质相比,DBC较高的稠环度特征对无机矿物吸附特征可能会产生较大影响。因此,本综述探索了DBC的性质、无机矿物种类和性质对DBC与无机矿物颗粒之间相互作用的影响,以及DBC在无机矿物上吸附后对土壤特性的调控。
   DBC作为生物炭中具有高度芳香化结构的组分,在环境中的含量可能影响污染物的吸附、迁移等环境行为。DBC 所含的极性官能团-OH、-COOH易与污染物发生相互作用。而由于不同类型污染物的化学性质存在较大差异,需充分理解DBC与污染物的相互作用机理,才能准确描述污染物和DBC的环境行为及风险。因此,系统理解DBC与污染物的相互作用及其对污染物迁移行为的影响有助于更好地预测土壤中污染物的环境行为和评估生物炭用于固定污染物的潜在应用。
   生物炭上有很多表面官能团,如羟基、醌、氢醌、羰基和羧基等,这些活性基团使其在氧化还原反应中成为重要的电子来源,从而影响其在土壤中的生物化学循环过程。DBC作为生物炭的重要组分,含有的羟基、羧基、羰基等官能团使其具有氧化还原活性、光反应活性等,因此研究DBC的反应活性对理解其物理化学性质及其与污染物的相互作用有重要意义。
   本文归纳了生物炭中DBC的性质、DBC与无机矿物的相互作用、DBC在无机矿物上吸附后对土壤特性的影响,并总结了DBC与污染物的相互作用、DBC的反应活性对其性质的影响等内容,以期为生物炭在土壤中的大规模应用奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭红波
杨东
高鹏
任欣
牛一帆
吴敏
关键词:  溶解性炭黑  相互作用  稳定性  污染物  环境行为    
Abstract: Biochar, as a low-cost and highly effective adsorbent, is produced by pyrolyzing agricultural waste or other solid biomass at low temperatures. Many contaminants adsorbed on biochar due to its porous structure and large specific surface area. In addition, biochars have large cation exchange capacities and abundant active functional groups, which enabled their important role in the immobilization of heavy metals, carbon sequestration in soils, and soil function improvement. The dissolvable composition of biochar is complex, including dissolved organic matter, dissolved black carbon (DBC), and inorganic minerals. Among them, the content of DBC in biochars is large. The functional groups such as carboxyl group and phenolic hydroxyl group, which enables DBC to interact with contaminants strongly. However, the effects of the properties of DBC for the adsorption, migration and transformation of contaminants on DBC are not clear. DBC, as a relatively independent colloidal particle, except for a large number of oxygen-containing functional groups, it has a high content of aromatic and aliphatic structures. Therefore, DBC can interact with inorganic mineral particles when it enters into the soils, and thus the DBC is stable in soils if the organo-mineral complexes is formed, this process may play an important role in promoting the formation of soil aggregates, but researchers have not pay attention to these processes at present. Compared with the conventional dissolved organic matter, the higher aromatic ring density of DBC has great impact on the adsorption characteristics of inorganic minerals. Therefore, the objective of this paper was to summarize the effects of properties of DBC, types of inorganic minerals for the interaction between DBC and inorganic mineral particles, and the characteristics of soils after the adsorption of DBC on inorganic minerals.
As a highly aromatic structure of biochars, the amount of DBC in the environment may affect the adsorption, migration and other environmental behaviors of contaminants. The polar functional groups of DBC such as -OH, -COOH are easy to interact with contaminants. For different types of contaminants, it is necessary to understand the interaction mechanisms between DBC and contaminants, and thus we can evaluate the environmental behaviors and risks of contaminants exactly due to their great differences in physico-chemical properties. Therefore, a systematic understanding of the interaction of DBC with contaminants and the migration behaviors of contaminants, which will help us to predict the environmental behavior of contaminants in soils and evaluate the potential application of biochar for immobilizing contaminants.
Many functional groups such as hydroxyl group, quinone group, hydroquinone group, carbonyl group and carboxyl group are on the surface of biochars. These active groups make biochar become an important electronic source in redox reactions, and then affecting its biochemical cycle process in soils. Therefore, as an important component of biochars, hydroxyl group, carboxyl group, carbonyl group of DBC makes it as redox activity and photo reactivity. The reactivity of DBC is of great significance for investigating its physicochemical properties and the interaction between DBC and contaminants.
This review summarized the properties of DBC, the interaction between DBC and inorganic minerals, and the effect of DBC for the soil properties. Moreover, we concluded the interaction between DBC and contaminants, the effects of reactivity of DBC for its properties in order to depend a theoretical foundation for large-scale application of biochar in this review.
Key words:  dissolved black carbon    interaction    stability    contaminants    environmental behaviors
                    发布日期:  2020-05-13
ZTFLH:  X506  
基金资助: 国家自然科学基金青年项目(41807370);昆明理工大学高层次人才引进项目(KKKP201823026);昆明理工大学土壤环境与生态安全省创新团队(2019HC008)
通讯作者:  minwup@hotmail.com   
作者简介:  彭红波,博士,昆明理工大学农业与食品学院讲师,硕士研究生导师。于2009年和2014年分别获得昆明理工大学环境科学与工程学院环境工程专业学士学位和博士学位。2014年11月在昆明理工大学冶金与能源工程学院冶金工程从事博士后研究工作,2015年11月获得博士后国际交流计划派出项目,在美国麻省大学开展两年的博士后研究工作。2017年回国后,以昆明理工大学高层次人才引进到农业与食品学院工作。主要针对污染物的环境行为、生物炭在土壤修复和改良中的关键科学问题展开基础研究。主持国家自然科学基金青年项目、昆明理工大学高层次人才引进项目的研究工作。在核心期刊发表学术论文20余篇,其中17篇被SCI收录,包括Journal of Hazardous Materials、Environmental Pollution等。曾获云南省科学技术奖自然科学类二等奖。
吴敏,昆明理工大学环境科学与工程学院教授、博士研究生导师。2002年7月本科毕业于武汉大学环境科学系,2005年7月在北京大学城市与环境学院取得硕士学位,2012年7月在昆明理工大学取得环境工程博士学位,2014—2015年在美国麻省大学农学院进行博士后研究工作。主要针对生物炭在土壤修复、土壤改良、生物毒理学中的关键科学问题展开基础性研究。主持三项国家基金,在核心期刊发表学术论文60余篇,其中31篇被SCI收录。曾获云南省科学技术奖自然科学类二等奖。
引用本文:    
彭红波, 杨东, 高鹏, 任欣, 牛一帆, 吴敏. 生物炭中溶解性炭黑的释放及环境效应[J]. 材料导报, 2020, 34(11): 11029-11034.
PENG Hongbo, YANG Dong, GAO Peng, REN Xin, NIU Yifan, WU Min. Releasing and the Environmental Implications of Dissolved Black Carbon from Biochars. Materials Reports, 2020, 34(11): 11029-11034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050149  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11029
1 Qu X, Fu H, Mao J, et al. Carbon, 2016, 96, 759.
2 Uchimiya M, Ohno T, He Z. Journal of Analytical and Applied Pyrolysis, 2013, 104, 84.
3 Jaffe R, Ding Y, Niggemann J, et al. Science, 2013, 340, 345.
4 Xu F, Wei C, Zeng Q, et al. Environmental Science & Technology, 2017, 51(23), 13723.
5 Woolf D, Amonette J E, Street-Perrott F A, et al. Nature Communications, 2010, 1, 56.
6 Kookana R S. Soil Research, 2010, 48(7), 627.
7 Dermont G, Bergeron M, Mercier G, et al. Journal of Hazardous Mate-rials, 2008, 152(1), 1.
8 Norwood M J, Louchouarn P, Kuo L J, et al. Organic Geochemistry, 2013, 56, 111.
9 Fu H, Liu H, Mao J, et al. Environmental Science & Technology, 2016, 50(3), 1218.
10 Jia F, Gan J. Environmental Pollution, 2014, 184, 131.
11 Hur J, Lee B M, Shin K H. Chemosphere, 2014, 111, 450.
12 Peng H B, Liang N, Li H, et al. Environmental Pollution, 2015, 204, 191.
13 Ransom B, Bennett R H, Baerwald R, et al. Marine Geology, 1997, 138(1-2), 1.
14 Kalbitz K, Schwesig D, Rethemeyer J, et al. Soil Biology and Biochemistry, 2005, 37(7), 1319.
15 Brodowski S, Amelung W, Haumaier L, et al. Geoderma, 2005, 128(1), 116.
16 Kiran Y K, Barkat A, Cui X Q, et al. Journal of Integrative Agriculture, 2017, 16(3), 725.
17 Qian L, Zhang W, Yan J, et al. Bioresource Technology, 2016, 206, 217.
18 Tang J, Li X, Luo Y, et al. Chemosphere, 2016, 152, 399.
19 Khan S, Waqas M, Ding F, et al. Journal of Hazardous Materials, 2015, 300, 243.
20 Fu H, Wei C, Qu X, et al. Environmental Pollution, 2018, 232, 402.
21 Glaser B, Haumaier L, Guggenberger G, et al. Organic Geochemistry, 1998, 29(4), 811.
22 Ballentine D C, Macko S A, Turekian V C. Chemical Geology, 1998, 152(1), 151.
23 Hammes K, Torn M S, Lapenas A G, et al. Biogeosciences, 2008, 5, 1339.
24 Yu G H, Xiao J, Hu S J, et al. Environmental Science and Technology, 2017, 51(9), 4960.
25 Bolan N S, Adriano D, Kunhikrishnan A, et al. Advances in Agronomy, 2011, 110, 1.
26 Saidy A R, Smernik R J, Baldock J A, et al. European Journal of Soil Science, 2015, 66, 83.
27 Kaiser K, Guggenberger G. Organic Geochemistry, 2000, 31, 711.
28 Mikutta R, Mikutta C, Kalbitz K, et al. Geochimica et Cosmochimica Acta, 2007, 71(10), 2569.
29 Feng X, Simpson A J, Simpson M J. Organic Geochemistry, 2005, 36(11), 1553.
30 Chen B F, Wu M, Zhang D, et al. Chemical Progress, 2012, 31(1), 193(in Chinese).
陈炳发, 吴敏, 张迪, 等. 化工进展, 2012, 31(1), 193.
31 Sodano M, Said-Pullicino D, Fiori A F, et al. Geoderma, 2016, 261, 169.
32 Kothawala D N, Roehm C, Blodau C, et al. Geoderma, 2012, 189-190, 334.
33 Sunda W G, Kieber D J. Nature, 1994, 367,62.
34 Lovley D, Coates J, Bluntharris E, et al. Nature, 1996, 382(6590), 445.
35 Lu H, Zhang W, Yang Y, et al. Water Research, 2012, 46(3), 854.
36 Xu X, Cao X, Zhao L, et al. Environmental Science and Pollution Research, 2013, 20(1), 358.
37 Wang Z Y, Liu G, Zheng H, et al. Bioresource Technology, 2015, 177, 308.
38 Ahmad Z, Gao B, Mosa A, et al. Journal of Cleaner Production, 2018, 180, 437.
39 Dong X, Ma L Q, Gress J, et al. Journal of Hazardous Materials, 2014, 267, 62.
40 Shen G, Ashworth D J, Gan J, et al. Environmental Science & Technology, 2016, 50(3), 1182.
41 Klüpfel L, Keiluweit M, Kleber M, et al. Environmental Science & Technology, 2014, 48(10), 5601.
42 Wang D, Zhang W, Hao X, et al. Environmental Science & Technology, 2013, 47(2), 821.
43 Tan W B, Zhang Y, Xi B D, et al. Science of the Total Environment, 2018, 610-611, 333.
44 Zhang Y, Xu X, Cao L, et al. Chemosphere, 2018, 211, 1073.
45 Adegboyega N F, Sharma V K, Siskova K M, et al. Environmental Science & Technology, 2013, 47(2),757.
46 Adegboyega N F, Sharma V K, Siskova K M, et al. Environmental Science & Technology, 2014, 48(6),3228.
47 Tan W B, Xi B D, Wang G A, et al. Environmental Science & Technology, 2017, 51(6), 3176.
48 Akaighe N, MacCuspie R I, Navarro D A, et al. Environmental Science & Technology, 2011, 45(9),3895.
49 Rinklebe J, Shaheen S M, Frohne T. Chemosphere, 2016, 142, 41.
50 Zheng X, Liu Y, Fu H, et al. Science of the Total Environment, 2019,673, 29.
[1] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[2] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[3] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[4] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[5] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[6] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[7] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[8] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[9] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[10] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[11] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[12] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达1. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[13] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[14] 杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
[15] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed