Application Progress of Annealing Treatment Process in the Study of Nano-multilayer Films
LI Hong1,,XING Zengcheng1,Erika Hodúlová2,HU Anming3,Wolfgang Tillmann4
1 College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China 2 Institute of Production Technologies,Slovak University of Technology,Bratislava 91724,Slovak 3 Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China 4 Institute of Materials Engineering,Dortmund University of Technology,Dortmund 44227,Germany
Abstract: Compared with traditional bulk materials, nano-multilayer films exhibit unique optical, magnetic, electrical, mechanical and thermal properties due to their small-size effects, surface effects, quantum size effects, and quantum tunneling effects. Therefore, nano-multilayer films have been widely used in the areas of optical devices, semiconductors, electromagnetic protection, processing and manufacturing, surface protection and electronic packaging as optical absorbing mate-rials, electromagnetic absorbing materials, magnetic recording materials, photovoltaic mate-rials and low-temperature joining materials. There exists intrinsic size dependence in the physical and mechanical properties with the microstructure of nano-multilayer films. Due to the limitation of the preparation process, defects such as vacancies and dislocations can cause difficulty in fully meeting the requirements of heat resis-tance, wear resistance and corrosion resistance in the complex service environment, which limits the further development of nano-multilayer films. In the field of concentrating circuits and chip fabrication, nano-multilayer films devices are often working in a severe environment deviating from the normal temperature. However, metastable nano-multilayer films with high surface free energy tend to reach a state of low-energy and form a stable structure by interdiffusion of immiscible dual phases, interlayer detachment and interface evolution under heat. It might result in the extinction of melting point depression property, superhardness property and so on due to the destructions of the nano-multilayer structure. Therefore, studying on the microstructure evolution, thermal stability and failure mechanism of nano-multilayer films is particularly important for increasing the service life and reliability of nano-multilayer systems. As a common heat treatment method, the annealing process is widely used to eliminate defects in metals, so as to achieve to modify the pro-perties. For nano-multilayer films operating at high temperatures, the annealing process is also an effective means of extending its service life. At present, the main directions of annealing process in nano-multilayer films research and application are: (ⅰ) improving nano-multilayer film performance by adopting different annealing temperature, holding time and cooling rate; (ⅱ) investigating the effect of annealing temperature on the thermal stability of nano-multilayer films by increasing the annealing upper limit temperature and obtain a critical temperature that maintains stability of the interface of nano-multilayer. It is found that the appropriate annealing process can refine the nano-multilayer films grain structure, increase the density, decrease the defect density, induce the formation of special structures, reinforcing the interaction of atoms and dislocations. Therefore, the light transmittance of the film is increased with improvement of optical properties, as well as the magnetic, electrical and mechanical properties are significantly improved; (ⅲ) in addition, the nano-multilayer film is annealed in a certain temperature range to observe the bilayer interface evolution, atomic diffusion and new phase formation using TEM, XRD and other means. Thus the structural stability, chemical stability and mechanical stability of nano-multilayer film can be studied. In this paper, the current progress and challenges of annealing process in nano-multilayer films modification and thermal stability research are reviewed. The influence of annealing parameters on the enhancement of nano-multilayer properties including optical properties, magnetic properties, electrical properties, mechanical properties is elaborated. Furthermore, it mainly focuses on the influencing mechanism of elevated temperature annealing on the thermal stability and microstructure evolution of immiscible nano-multilayer system. At last, the further development of annealing process for designing and preparing of high-strength and thermally stable nano-multilayer films are prospected, which has important theoretical significance and application value in materials welding/joining, integrated circuits, cutting tools, absorbing coatings, etc.
李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
LI Hong,XING Zengcheng,Erika Hodúlová,HU Anming,Wolfgang Tillmann. Application Progress of Annealing Treatment Process in the Study of Nano-multilayer Films. Materials Reports, 2020, 34(3): 3099-3105.
1 Anders S, Anders A, Kortright J B, et al. Surface & Coatings Technology, 1993, 61, 257. 2 Grünberg P.Acta Materialia, 2000, 48, 239. 3 Clemens B, Kung H, Barnett S.MRS Bulletin, 1999, 24, 20. 4 Kuppusami P, Balakrishnan G, Mishra M. Journal of Nanoscience & Nanotechnology, 2016, 16, 10069. 5 Kuo C M, Kuo P C. Journal of Applied Physics, 2000, 87, 419. 6 Luo C P, Liou S H, Sellmyer D J.Journal of Applied Physics, 2000, 87, 6941. 7 Zhang R Q, Dong L, Li D J, et al. Journal of Optoelectronics·Laser, 2012, 23(12), 2355 (in Chinese). 张瑞奇, 董磊, 李德军, 等.光电子·激光, 2012, 23(12), 2355. 8 Supasai T, Dangtip S.Applied Surface Science, 2010, 256(14), 4462. 9 Zhao Z M, Ma E Y, Zhang X J, et al. Rare Metal materials and Enginee-ring, 2014, 43(7), 1732 (in Chinese). 赵志明, 马二云, 张晓静,等.稀有金属材料与工程, 2014, 43(7), 1732. 10 Ershov A V, Chugrov I A, Mashin A I, et al. Semiconductors, 2011, 45(6), 731. 11 Khizar M, Acharya K, Raja M Y. In: Integrated Photonics and Nanophotonics Research and Applications. Salt Lake City, 2007, pp. 256. 12 Matsuda O, Wright O B. Journal of the Optical Society of America, 2002, 19(12), 3028. 13 Qian J, Liu P, Xiao Y, et al. Advanced Materials, 2010, 21(36), 3663. 14 Weller D, Moser A, Folks L, et al. IEEE Transactions on Magnetics, 2000, 36(1), 10. 15 Thiele J U, Folks L, Toney M F, et al. Journal of Applied Physics, 1998, 84(10), 5686. 16 Du C F, Huang Y, Qin X L. Ordnance Material Science and Engineering, 2007, 20(2), 75 (in Chinese). 杜朝锋, 黄英, 泰秀兰.兵器材料科学与工程, 2007, 30(2), 75. 17 Xu X H, Wang F, Wu H S. Chinese Science Bulletin, 2004,49(19), 1950(in Chinese). 许小红, 王芳, 武海顺.科学通报, 2004, 49(19), 1950. 18 Zhu Y, Cai J W. Acta Physica Sinica, 2005, 54(1), 393 (in Chinese). 竺云, 蔡建旺.物理学报, 2005, 54(1), 393. 19 Kamzin A S, Ganeev V, Zaripova L D.Physics of the Solid State, 2012, 54(6), 1166. 20 Li X Y, Sun X J, Wang J B, et al.Journal of Alloys & Compounds, 2014, 592, 185. 21 Bekker V, Seemann K, Leiste H, et al. Journal of Magnetism & Magnetic Materials, 2005, 290, 1434. 22 Seemann K, Leiste H, Bekker V. Journal of Magnetism & Magnetic Materials, 2004, 283(2-3), 310. 23 Wu Z H. The effect of annealing treatment on electromagnetic properties of FeCoB-SiO2 magnetic nanofilms. Master's Thesis, Huazhong University of Science and Technology, China, 2007 (in Chinese). 吴志华. 退火处理对FeCoB-SiO2磁性纳米膜电磁性能的影响. 硕士学位论文, 华中科技大学, 2007. 24 Sathyamoorthy R, Sudhagar P, Chandramohan S, et al. Crystal Research & Technology, 2007, 42(5), 498. 25 Huang L J, Ren N F, Li B J, et al. Acta Metallurgica Sinica (English Letters), 2015, 28(3), 281. 26 Fang B, Zeng Z G, Yan X X, et al.Journal of Materials Science: Mate-rials in Electronics, 2013, 24(4), 1105. 27 Nakamoto M.Información Tecnológica, 2004, 15(2), 55. 28 Riveros R, Romero E, Gordillo G.Brazilian Journal of Physics, 2006, 36(3), 1042. 29 Chen X Y, Wang J, Ding Y T.Journal of Functional Materials, 2013, 44(1), 139. 30 Fang G J, Li D, Yao B L.Thin Solid Films, 2002, 418(2), 156. 31 Koehler J S.Physical Review B, 1970, 2(2), 547. 32 Yang W M C, Tsakalakos T, Hilliard J E.Journal of Applied Physics, 1977, 48(3), 876. 33 Kato M, Mori T, Schwartz L H.Acta Metallurgica, 1980, 28(3), 285. 34 Anderson P M, Li C.Nanostructured Materials, 1995, 5(3), 349. 35 Liu K T, Duh J G.Surface & Coatings Technology, 2008, 202(12), 2737. 36 Jian S R, Chang H W, Wang Y W, et al.Journal of Alloys & Compounds, 2015, 648(17), 980. 37 Kumar A, Sharma S K, Bysakh S, et al. Journal of Materials Science & Technology, 2010, 26(11), 961. 38 Zheng X J, Yi W M, Chen Y Q, et al. Scripta Materialia, 2007, 57(8), 675. 39 Jiang D D, Zheng X J, Gong Y Q, et al. Journal of Inorganic Materials, 2013, 28(2), 131 (in Chinese). 蒋大洞, 郑学军, 龚跃球,等.无机材料学报, 2013, 28(2), 131. 40 Tang W, Yang J J, Li C M. Advanced Materials Research, 2013, 644, 161. 41 Lucadamo G, Barmak K, Lavoie C, et al. Journal of Applied Physics, 2002, 91(12), 9575. 42 Kim D G, Seong T Y, Baik Y J.Surface & Coatings Technology, 2002, 153(1), 79. 43 W Ping, Jiang E Y, Liu Y G, et al.Thin Solid Films, 1997, 301(1-2), 90. 44 Sharma G, Ramanujan R V, Tiwari G P.Acta Materialia, 2000, 48(4), 875. 45 Kucharska B, Kulej E, Wrobel A.Optica Applicata, 2012, 42(4), 725. 46 Bobeth M, Krawieta R, Mai H,et al. Solid State Ionics, 1997, 101, 279. 47 Barshilia H C, Jain A, Rajam K S. Vacuum, 2004, 72(3), 241. 48 Su M H, Hwang C C, Chang J G,et al. Journal of Applied Physics, 2003, 93(8), 4566. 49 Wan H B. Evolution of microstructures in nano-multilayers at high tempe-ratures. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2012 (in Chinese). 万海波. 纳米多层膜高温下微结构的演化.博士学位论文, 上海交通大学, 2012. 50 Knoedler H L, Lucas G E, Levi C G.Metallurgical & Materials Transactions A, 2003, 34(5), 1043. 51 Misra A, Hoagland R G, Kung H. Philosophical Magazine, 2004, 84(10), 1021. 52 Misra A, Hoagland R G. Journal of Materials Research, 2005, 20(8), 2046. 53 Moszner F, Cancellieri C, Chiodi M, et al. Acta Materialia, 2016, 107, 345. 54 Cancellieri C, Moszner F, Chiodi M, et al.Journal of Applied Physics, 2016, 120(19), 321. 54 Mirco Chiodi, Claudia Cancellieria, Frank Moszner, et al.Journal of Materials ChemistryC, 2016, 4(22), 4927. 56 Lehmert B, Janczak-Rusch J, Pigozzi G.Materials Transactions, 2015, 56(7), 1015. 57 Janczak-Rusch J, Pigozzi G, Lehmert B, et al. In: 5th International Brazing and Soldering Conference American Society for Metals. Las Vegas, 2012, pp. 162. 58 Qiao Q. Preparation of nano-multilayer filler film and application in brazing of stainless steel. Master's Thesis, Beijing University of Technology, China, 2017 (in Chinese). 乔巧. 纳米多层膜钎料的制备与真空钎焊不锈钢的应用. 硕士学位论文, 北京工业大学, 2017. 59 Tillmann W, Kuck M, Wojarski L, et al. In: High Temperature Brazing and Diffusion Bonding the 11th International Conference. Aachen, 2016, pp. 347. 60 Musil J. Surface & Coatings Technology, 2000, 125(1), 322. 61 Tanaka Y, Gur T M, Kelly M, et al.Journal of Vacuum Science & Techno-logy A Vacuum Surfaces and Films, 1992, 10(4), 1749. 62 Fukumoto N, Ezura H, Suzuki T.Surface & Coatings Technology, 2009, 204(6), 902. 63 Kobiyama M, Inami T, Okuda S. Scripta Materialia, 2001, 44(8), 1547. 64 Zhang S, Cai F, Li M. Surface & Coatings Technology, 2012, 206(17), 3572.