Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3099-3105    https://doi.org/10.11896/cldb.19010159
  无机非金属及其复合材料 |
退火处理工艺在纳米多层膜材料研究中的应用进展
李红1,,邢增程1,Erika Hodúlová2,胡安明3,Wolfgang Tillmann4
1 北京工业大学材料科学与工程学院,北京 100124
2 斯洛伐克工业大学生产技术研究所,布拉迪斯拉发 91724,斯洛伐克
3 北京工业大学激光学院,北京 100124
4 德国多特蒙德工业大学材料工程学院,多特蒙德 44227,德国
Application Progress of Annealing Treatment Process in the Study of Nano-multilayer Films
LI Hong1,,XING Zengcheng1,Erika Hodúlová2,HU Anming3,Wolfgang Tillmann4
1 College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China
2 Institute of Production Technologies,Slovak University of Technology,Bratislava 91724,Slovak
3 Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China
4 Institute of Materials Engineering,Dortmund University of Technology,Dortmund 44227,Germany
下载:  全 文 ( PDF ) ( 13975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统块状材料相比,纳米多层膜因其小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,表现出独特的光、磁、电、力学和热学性能,可作为光电材料、光吸收材料、电磁波吸收材料、磁记录材料和低温连接材料,被广泛应用于光学器件、半导体、电磁防护、加工制造、表面防护以及电子封装等领域。纳米多层膜的微观结构与宏观物理力学性能具有强烈的尺度效应。由于受制备工艺所限,纳米多层膜内部存在的空位、位错等缺陷导致其在复杂服役环境中难以完全满足耐热、耐磨和耐腐蚀等要求,限制了纳米多层膜的发展。而在集成电路和芯片制造领域,纳米多层膜器件常处于偏离常温的苛刻工作环境中,具有较高表面自由能的亚稳态纳米多层膜在受热情况下会通过两相互扩散、层内脱离和界面结构变化等方式,趋向达到低能量的稳定结构,从而破坏了多层膜内部的微观结构,导致其熔点降低、超硬等特性消失或减弱。因此,研究纳米多层膜的微观结构演化、热稳定性及其失效机理,直接关系到纳米多层膜体系的服役寿命和可靠性。退火工艺作为一种常见的热处理手段,被广泛应用于消除金属内部的缺陷,从而达到改善材料性能的目的。对于在高温条件下工作的纳米多层膜,退火工艺也是延长其使用寿命的有效手段。目前退火工艺在纳米多层膜研究中的主要应用方向有:(1)通过改变退火温度、保温时间和冷却速度,改善纳米多层膜的性能;(2)通过提高退火上限温度,研究退火温度对纳米多层膜热稳定性的影响,获得保持微观结构稳定的临界温度。研究发现,适当的退火工艺可以细化纳米多层膜的晶粒结构,增加致密度,降低缺陷密度,诱导产生特殊结构,增强原子与位错的交互作用,从而提高薄膜的透光率,改善薄膜光学性能或磁学、电学和力学性能;(3)在一定温度区间内对纳米多层膜进行退火,通过TEM、XRD等手段观察多层膜内部界面的结构变化、原子扩散情况及新的物相生成情况,从而研究了纳米多层膜的结构稳定性、化学稳定性和力学稳定性。本文综述了退火工艺在纳米多层膜改性以及热稳定性研究中的应用进展,讨论了退火工艺对纳米多层膜性能(光学性能、磁学性能、电学性能、力学性能)的影响。重点介绍了退火处理温度对不互溶纳米多层膜体系热稳定性和组织演变的影响机理。最后指出了退火工艺在纳米多层膜研究中的进一步应用方向,以期对高强度、高热稳定性纳米多层膜的设计制备及在材料焊接/连接、集成电路、切削刀具、吸波涂层等领域的广泛应用提供重要的理论和应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红
邢增程
Erika Hodúlová
胡安明
Wolfgang Tillmann
关键词:  纳米多层膜  退火工艺  热稳定性  物理性能    
Abstract: Compared with traditional bulk materials, nano-multilayer films exhibit unique optical, magnetic, electrical, mechanical and thermal properties due to their small-size effects, surface effects, quantum size effects, and quantum tunneling effects. Therefore, nano-multilayer films have been widely used in the areas of optical devices, semiconductors, electromagnetic protection, processing and manufacturing, surface protection and electronic packaging as optical absorbing mate-rials, electromagnetic absorbing materials, magnetic recording materials, photovoltaic mate-rials and low-temperature joining materials.
There exists intrinsic size dependence in the physical and mechanical properties with the microstructure of nano-multilayer films. Due to the limitation of the preparation process, defects such as vacancies and dislocations can cause difficulty in fully meeting the requirements of heat resis-tance, wear resistance and corrosion resistance in the complex service environment, which limits the further development of nano-multilayer films. In the field of concentrating circuits and chip fabrication, nano-multilayer films devices are often working in a severe environment deviating from the normal temperature. However, metastable nano-multilayer films with high surface free energy tend to reach a state of low-energy and form a stable structure by interdiffusion of immiscible dual phases, interlayer detachment and interface evolution under heat. It might result in the extinction of melting point depression property, superhardness property and so on due to the destructions of the nano-multilayer structure. Therefore, studying on the microstructure evolution, thermal stability and failure mechanism of nano-multilayer films is particularly important for increasing the service life and reliability of nano-multilayer systems.
As a common heat treatment method, the annealing process is widely used to eliminate defects in metals, so as to achieve to modify the pro-perties. For nano-multilayer films operating at high temperatures, the annealing process is also an effective means of extending its service life. At present, the main directions of annealing process in nano-multilayer films research and application are: (ⅰ) improving nano-multilayer film performance by adopting different annealing temperature, holding time and cooling rate; (ⅱ) investigating the effect of annealing temperature on the thermal stability of nano-multilayer films by increasing the annealing upper limit temperature and obtain a critical temperature that maintains stability of the interface of nano-multilayer. It is found that the appropriate annealing process can refine the nano-multilayer films grain structure, increase the density, decrease the defect density, induce the formation of special structures, reinforcing the interaction of atoms and dislocations. Therefore, the light transmittance of the film is increased with improvement of optical properties, as well as the magnetic, electrical and mechanical properties are significantly improved; (ⅲ) in addition, the nano-multilayer film is annealed in a certain temperature range to observe the bilayer interface evolution, atomic diffusion and new phase formation using TEM, XRD and other means. Thus the structural stability, chemical stability and mechanical stability of nano-multilayer film can be studied.
In this paper, the current progress and challenges of annealing process in nano-multilayer films modification and thermal stability research are reviewed. The influence of annealing parameters on the enhancement of nano-multilayer properties including optical properties, magnetic properties, electrical properties, mechanical properties is elaborated. Furthermore, it mainly focuses on the influencing mechanism of elevated temperature annealing on the thermal stability and microstructure evolution of immiscible nano-multilayer system. At last, the further development of annealing process for designing and preparing of high-strength and thermally stable nano-multilayer films are prospected, which has important theoretical significance and application value in materials welding/joining, integrated circuits, cutting tools, absorbing coatings, etc.
Key words:  nano-multilayer film    annealing process    thermal stability    physical properties
                    发布日期:  2020-01-03
ZTFLH:  TG156.21  
基金资助: 国家自然科学基金(51475007);北京市自然科学基金(3172006);2019科技创新服务能力建设项目(PXM2019_014204_500032)
通讯作者:  hongli@bjut.edu.cn   
作者简介:  李红,北京工业大学材料科学与工程学院副教授,硕士研究生导师。2006年获北京科技大学材料加工工程专业博士学位,2006—2008年在北京工业大学材料学院进行博士后研究,2012—2013年在德国多特蒙德工业大学作国家公派访问学者。2013年起担任国际焊接学会(IIW)钎焊扩散焊专业委员会(C-XVII)软钎焊分委会副主席。主要研究方向为钎焊和微纳连接,已发表论文70余篇,授权国家专利15项。
引用本文:    
李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
LI Hong,XING Zengcheng,Erika Hodúlová,HU Anming,Wolfgang Tillmann. Application Progress of Annealing Treatment Process in the Study of Nano-multilayer Films. Materials Reports, 2020, 34(3): 3099-3105.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010159  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3099
1 Anders S, Anders A, Kortright J B, et al. Surface & Coatings Technology, 1993, 61, 257.
2 Grünberg P.Acta Materialia, 2000, 48, 239.
3 Clemens B, Kung H, Barnett S.MRS Bulletin, 1999, 24, 20.
4 Kuppusami P, Balakrishnan G, Mishra M. Journal of Nanoscience & Nanotechnology, 2016, 16, 10069.
5 Kuo C M, Kuo P C. Journal of Applied Physics, 2000, 87, 419.
6 Luo C P, Liou S H, Sellmyer D J.Journal of Applied Physics, 2000, 87, 6941.
7 Zhang R Q, Dong L, Li D J, et al. Journal of Optoelectronics·Laser, 2012, 23(12), 2355 (in Chinese).
张瑞奇, 董磊, 李德军, 等.光电子·激光, 2012, 23(12), 2355.
8 Supasai T, Dangtip S.Applied Surface Science, 2010, 256(14), 4462.
9 Zhao Z M, Ma E Y, Zhang X J, et al. Rare Metal materials and Enginee-ring, 2014, 43(7), 1732 (in Chinese).
赵志明, 马二云, 张晓静,等.稀有金属材料与工程, 2014, 43(7), 1732.
10 Ershov A V, Chugrov I A, Mashin A I, et al. Semiconductors, 2011, 45(6), 731.
11 Khizar M, Acharya K, Raja M Y. In: Integrated Photonics and Nanophotonics Research and Applications. Salt Lake City, 2007, pp. 256.
12 Matsuda O, Wright O B. Journal of the Optical Society of America, 2002, 19(12), 3028.
13 Qian J, Liu P, Xiao Y, et al. Advanced Materials, 2010, 21(36), 3663.
14 Weller D, Moser A, Folks L, et al. IEEE Transactions on Magnetics, 2000, 36(1), 10.
15 Thiele J U, Folks L, Toney M F, et al. Journal of Applied Physics, 1998, 84(10), 5686.
16 Du C F, Huang Y, Qin X L. Ordnance Material Science and Engineering, 2007, 20(2), 75 (in Chinese).
杜朝锋, 黄英, 泰秀兰.兵器材料科学与工程, 2007, 30(2), 75.
17 Xu X H, Wang F, Wu H S. Chinese Science Bulletin, 2004,49(19), 1950(in Chinese).
许小红, 王芳, 武海顺.科学通报, 2004, 49(19), 1950.
18 Zhu Y, Cai J W. Acta Physica Sinica, 2005, 54(1), 393 (in Chinese).
竺云, 蔡建旺.物理学报, 2005, 54(1), 393.
19 Kamzin A S, Ganeev V, Zaripova L D.Physics of the Solid State, 2012, 54(6), 1166.
20 Li X Y, Sun X J, Wang J B, et al.Journal of Alloys & Compounds, 2014, 592, 185.
21 Bekker V, Seemann K, Leiste H, et al. Journal of Magnetism & Magnetic Materials, 2005, 290, 1434.
22 Seemann K, Leiste H, Bekker V. Journal of Magnetism & Magnetic Materials, 2004, 283(2-3), 310.
23 Wu Z H. The effect of annealing treatment on electromagnetic properties of FeCoB-SiO2 magnetic nanofilms. Master's Thesis, Huazhong University of Science and Technology, China, 2007 (in Chinese).
吴志华. 退火处理对FeCoB-SiO2磁性纳米膜电磁性能的影响. 硕士学位论文, 华中科技大学, 2007.
24 Sathyamoorthy R, Sudhagar P, Chandramohan S, et al. Crystal Research & Technology, 2007, 42(5), 498.
25 Huang L J, Ren N F, Li B J, et al. Acta Metallurgica Sinica (English Letters), 2015, 28(3), 281.
26 Fang B, Zeng Z G, Yan X X, et al.Journal of Materials Science: Mate-rials in Electronics, 2013, 24(4), 1105.
27 Nakamoto M.Información Tecnológica, 2004, 15(2), 55.
28 Riveros R, Romero E, Gordillo G.Brazilian Journal of Physics, 2006, 36(3), 1042.
29 Chen X Y, Wang J, Ding Y T.Journal of Functional Materials, 2013, 44(1), 139.
30 Fang G J, Li D, Yao B L.Thin Solid Films, 2002, 418(2), 156.
31 Koehler J S.Physical Review B, 1970, 2(2), 547.
32 Yang W M C, Tsakalakos T, Hilliard J E.Journal of Applied Physics, 1977, 48(3), 876.
33 Kato M, Mori T, Schwartz L H.Acta Metallurgica, 1980, 28(3), 285.
34 Anderson P M, Li C.Nanostructured Materials, 1995, 5(3), 349.
35 Liu K T, Duh J G.Surface & Coatings Technology, 2008, 202(12), 2737.
36 Jian S R, Chang H W, Wang Y W, et al.Journal of Alloys & Compounds, 2015, 648(17), 980.
37 Kumar A, Sharma S K, Bysakh S, et al. Journal of Materials Science & Technology, 2010, 26(11), 961.
38 Zheng X J, Yi W M, Chen Y Q, et al. Scripta Materialia, 2007, 57(8), 675.
39 Jiang D D, Zheng X J, Gong Y Q, et al. Journal of Inorganic Materials, 2013, 28(2), 131 (in Chinese).
蒋大洞, 郑学军, 龚跃球,等.无机材料学报, 2013, 28(2), 131.
40 Tang W, Yang J J, Li C M. Advanced Materials Research, 2013, 644, 161.
41 Lucadamo G, Barmak K, Lavoie C, et al. Journal of Applied Physics, 2002, 91(12), 9575.
42 Kim D G, Seong T Y, Baik Y J.Surface & Coatings Technology, 2002, 153(1), 79.
43 W Ping, Jiang E Y, Liu Y G, et al.Thin Solid Films, 1997, 301(1-2), 90.
44 Sharma G, Ramanujan R V, Tiwari G P.Acta Materialia, 2000, 48(4), 875.
45 Kucharska B, Kulej E, Wrobel A.Optica Applicata, 2012, 42(4), 725.
46 Bobeth M, Krawieta R, Mai H,et al. Solid State Ionics, 1997, 101, 279.
47 Barshilia H C, Jain A, Rajam K S. Vacuum, 2004, 72(3), 241.
48 Su M H, Hwang C C, Chang J G,et al. Journal of Applied Physics, 2003, 93(8), 4566.
49 Wan H B. Evolution of microstructures in nano-multilayers at high tempe-ratures. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2012 (in Chinese).
万海波. 纳米多层膜高温下微结构的演化.博士学位论文, 上海交通大学, 2012.
50 Knoedler H L, Lucas G E, Levi C G.Metallurgical & Materials Transactions A, 2003, 34(5), 1043.
51 Misra A, Hoagland R G, Kung H. Philosophical Magazine, 2004, 84(10), 1021.
52 Misra A, Hoagland R G. Journal of Materials Research, 2005, 20(8), 2046.
53 Moszner F, Cancellieri C, Chiodi M, et al. Acta Materialia, 2016, 107, 345.
54 Cancellieri C, Moszner F, Chiodi M, et al.Journal of Applied Physics, 2016, 120(19), 321.
54 Mirco Chiodi, Claudia Cancellieria, Frank Moszner, et al.Journal of Materials Chemistry C, 2016, 4(22), 4927.
56 Lehmert B, Janczak-Rusch J, Pigozzi G.Materials Transactions, 2015, 56(7), 1015.
57 Janczak-Rusch J, Pigozzi G, Lehmert B, et al. In: 5th International Brazing and Soldering Conference American Society for Metals. Las Vegas, 2012, pp. 162.
58 Qiao Q. Preparation of nano-multilayer filler film and application in brazing of stainless steel. Master's Thesis, Beijing University of Technology, China, 2017 (in Chinese).
乔巧. 纳米多层膜钎料的制备与真空钎焊不锈钢的应用. 硕士学位论文, 北京工业大学, 2017.
59 Tillmann W, Kuck M, Wojarski L, et al. In: High Temperature Brazing and Diffusion Bonding the 11th International Conference. Aachen, 2016, pp. 347.
60 Musil J. Surface & Coatings Technology, 2000, 125(1), 322.
61 Tanaka Y, Gur T M, Kelly M, et al.Journal of Vacuum Science & Techno-logy A Vacuum Surfaces and Films, 1992, 10(4), 1749.
62 Fukumoto N, Ezura H, Suzuki T.Surface & Coatings Technology, 2009, 204(6), 902.
63 Kobiyama M, Inami T, Okuda S. Scripta Materialia, 2001, 44(8), 1547.
64 Zhang S, Cai F, Li M. Surface & Coatings Technology, 2012, 206(17), 3572.
[1] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[2] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[3] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[4] 王博,朱孝钦,胡劲,常静华,陈洋,史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[5] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[6] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[7] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[8] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[9] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[10] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[11] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[12] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[13] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[14] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[15] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed