Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 278-281    https://doi.org/10.11896/j.issn.1005-023X.2018.02.024
  物理   材料研究 |材料 |
废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用
胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民
华南理工大学材料科学与工程学院,广东省高性能与功能高分子材料重点实验室,广州 510640
Preparation of WPCBP/SiO2 Hybrid Filler and Its Application in Unsaturated Polyester Resin
Dechao HU,Zhixin JIA,Bangchao ZHONG,Huanhuan DONG,Yong DING,Yuanfang LUO,Demin JIA
School of Materials Science and Engineering, Guangdong Key Laboratory of High Performance and FunctionalPolymer Materials, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为增强废印刷电路板非金属粉(WPCBP)与聚合物基体之间的界面结合作用,采用溶胶-凝胶法在WPCBP表面原位负载了一层纳米二氧化硅粒子(SiO2),制备了一种新型的WPCBP-SiO2杂化填料。SEM、TGA和FTIR证明SiO2通过化学键成功负载到了杂化填料的表面。采用含双键的界面改性剂对杂化填料进行改性后,应用于不饱和聚酯树脂基体,探讨了未改性杂化填料及表面改性杂化填料对不饱和聚酯复合材料的力学性能、界面结合作用和热稳定性能的影响。结果表明,新型的杂化填料WPCBP-SiO2能够与不饱和聚酯基体形成强的界面结合作用,显著提高不饱和聚酯复合材料的力学性能和热稳定性能,且表面改性后复合材料的各项性能得到进一步提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡德超
贾志欣
钟邦超
董焕焕
丁勇
罗远芳
贾德民
关键词:  杂化填料  废印刷电路板非金属粉  不饱和聚酯树脂  力学性能  补强机理  热稳定性    
Abstract: 

To strengthen the interfacial interaction between waste printed circuit boards powders (WPCBP) and polymer matrix, WPCBP was immobilized a layer of SiO2 nanoparticles to form a novel WPCBP-SiO2 hybrid filler by sol-gel method. SEM, TGA and FTIR suggested that SiO2 nanoparticles were chemically bonded onto the surface of WPCBP. Then WPCBP-SiO2 hybrid filler was modified with a silane coupling agent and incorporated in unsaturated polyester resin (UPE) matrix. The effect of WPCBP-SiO2 hybrid filler on mechanical properties, interfacial bonding and thermal stability of UPE composites were comprehensively explored. It has been confirmed that WPCBP-SiO2 hybrid filler could form a strong interfacial interaction with polymer matrix, and markedly enhance the mechanical properties and thermal stability of UPE composites. Besides, the modification of hybrid filler give further improvements of UPE composites.

Key words:  hybrid filler    WPCBP    unsaturated polyester resin    mechanical property    reinforcing mechanism    thermal stability
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ327  
基金资助: 广东省应用型科技研发专项资金(2015B020237004)
引用本文:    
胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
Dechao HU,Zhixin JIA,Bangchao ZHONG,Huanhuan DONG,Yong DING,Yuanfang LUO,Demin JIA. Preparation of WPCBP/SiO2 Hybrid Filler and Its Application in Unsaturated Polyester Resin. Materials Reports, 2018, 32(2): 278-281.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.024  或          https://www.mater-rep.com/CN/Y2018/V32/I2/278
图1  WPCBP-SiO2杂化填料的制备示意图
图2  (a—c)WPCBP和(d—f)WPCBP-SiO2杂化填料的扫描电镜图
图3  WPCBP、WPCBP-SiO2和m-WPCBP-SiO2的FTIR曲线
图4  WPCBP和WPCBP-SiO2的TGA和DTG曲线
图5  (a,b)WPCBP, (c,d)WPCBP-SiO2和(e,f) m-WPCBP-SiO2填充的UPE复合材料的扫描电镜图
Sample Tensile strength
MPa
Flexural strength
MPa
Impact strength
kJ/m2
UPE 56.7±1.3 91.4±1.1 5.9±0.13
UPE/WPCBP composites 47.1±1.5 85.7±1.4 4.4±0.37
UPE/WPCBP-SiO2 composites 60.1±1.5 97.1±1.5 7.6±0.59
UPE/m-WPCBP-SiO2 composites 70.3±1.7 111.3±1.5 9.4±0.41
表1  UPE及UPE复合材料的力学性能
图6  UPE复合材料的补强机理示意图
图7  UPE和UPE复合材料的TGA曲线
1 Huang K, Guo J, Xu Z , et al. Recycling of waste printed circuit boards:A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials, 2009,164(2-3):399.
2 Zhou Y, Qiu K . A new technology for recycling materials from waste printed circuit boards[J]. Journal of Hazardous Materials, 2010,175(1-3):823.
3 Zheng Y H, Shen Z G, Cai C J , et al. Polypropylene filled with nonmetals recycled from waste PCBs[J]. Polymer Materials Science and Engineering, 2009,25(9):154(in Chinese).
4 郑艳红, 沈志刚, 蔡楚江 , 等. 废印刷电路板非金属粉填充聚丙烯的实验[J]. 高分子材料科学与工程, 2009,25(9):154.
5 Wang X, Guo Y, Liu J , et al. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders[J]. Journal of Environmental Management, 2010,91(12):2505.
6 Wang F, He H, Chen J Z , et al. Modifying of PE wood-plastic composite with waste printed circuit board nonmetal powder[J]. Polymer Materials Science and Engineering, 2012,28(8):174(in Chinese).
7 王丰, 何慧, 陈继尊 , 等. 废PCB粉增强改性聚乙烯基木塑复合材料[J]. 高分子材料科学与工程, 2012,28(8):174.
8 Zheng Y H, Shen Z G, Cai C J , et al. Mechanical properties of PP matrix composites filled with nonmetals recycled from waste PCB and milled glass fibers[J]. Acta Materiae Compositae Sinica, 2009,26(2):59(in Chinese).
9 郑艳红, 沈志刚, 蔡楚江 , 等. 废印刷电路板非金属粉增强及磨碎玻璃纤维增强聚丙烯力学性能[J]. 复合材料学报, 2009,26(2):59.
10 Hong S G, Su S H . The use of recycled printed circuit boards as reinforcing fillers in the polyester composite[J]. Journal of Environmental Science & Health Part A, 1996,31(6):1345.
11 Xu B F, Lin Z D, Xian J M , et al. Preparation and characterization of polypropylene composites with nonmetallic materials recycled from printed circuit boards[J]. Journal of Thermoplastic Composite Materials, 2016,29(1):48.
12 Li S Y, Sun Y S, Liang H F , et al. Production and characterization of polypropylene composites filled with glass fibre recycled from pyrolysed waste printed circuit boards[J]. Environmental Technology, 2014,35(21):2743.
13 Fan W, Zhang C, Liu T X . Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013,30(1):14(in Chinese).
14 樊玮, 张超, 刘天西 . 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013,30(1):14.
15 Yang W B, Zhang L, Liu J W , et al. Progress in research on preparation and application of graphene composites[J]. Journal of Mate-rials Engineering, 2015,43(3):91(in Chinese).
16 杨文彬, 张丽, 刘菁伟 , 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015,43(3):91.
17 Fan Z J, Yan J, Zhi L J , et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010,22(33):3723.
18 Zhang C, Huang S, Weng W T , et al. Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites[J]. Journal of Materials Chemistry, 2012,22(6):2427.
19 Lin Y, Liu S Q, Peng J , et al. The filler-rubber interface and reinforcement in styrene butadiene rubber composites with graphene/si-lica hybrids: A quantitative correlation with the constrained region[J]. Composites Part A: Applied Science and Manufacturing, 2016,86:19.
20 Jiang L, Zhang C, Liu M , et al. Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids[J]. Composites Science and Technology, 2014,91(31):98.
21 Lin J, Zhong B C, Jia Z X , et al. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin[J]. Applied Surface Science, 2017,407(15):130.
22 Xing M F, Zhang F S . Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments[J]. Chemical Engineering Journal, 2013,219(1):131.
23 Liu Y, Deng C L, Zhao J , et al. An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system[J]. Polymer Degradation and Stability, 2011,96(3):363.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed