Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080129-11    https://doi.org/10.11896/cldb.22080129
  金属与金属基复合材料 |
选区激光熔化成形铜合金研究进展
刘斌1,†, 索超1,†, 李忠华2,*, 蒯泽宙1, 陈彦磊1, 唐秀2
1 中北大学材料科学与工程学院,太原 030051
2 中北大学机械工程学院,太原 030051
Research Status of the Selective Laser Melting Fabrication of Copper Alloys
LIU Bin1,†, SUO Chao1,†, LI Zhonghua2,*, KUAI Zezhou1, CHEN Yanlei1, TANG Xiu2
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2 School of Mechanical Engineering, North University of China, Taiyuan 030051, China
下载:  全 文 ( PDF ) ( 15839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜合金具有良好的导电导热性,是众多行业的基础材料,随着高新技术的迅速发展,许多行业对高性能、高精度、复杂结构铜合金零部件需求日益增大。传统工艺可制备常规铜合金零件,但对于一些复杂结构铜合金零部件的制备存在困难。首先,本文综述了选区激光熔化成形铜及铜合金的研究进展,系统介绍了目前选区激光熔化成形纯铜所遇到的难点及解决方法;然后,综述了目前选区激光熔化成形不同系列铜合金的研究现状,重点介绍了不同系列铜合金成形件微观组织和力学性能及热处理后成形件微观组织和力学性能变化;最后总结了选区激光熔化成形铜及铜合金存在的问题及未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘斌
索超
李忠华
蒯泽宙
陈彦磊
唐秀
关键词:  选区激光熔化成形  铜合金  微观组织  力学性能  热处理    
Abstract: Copper alloys that exhibit strong electrical and thermal conductivity form the basic materials for several industries. The rapid development of high-technology has led to an increasing demand for high-performance, high-precision, complex-structure copper alloy parts in many industries. The preparation of complex-structure copper alloy parts via traditional processes is challenging. This paper presents a review of the research progress of selective laser melting (SLM) of copper and copper alloys. First, the difficulties encountered in SLM of pure copper and the respective solutions are systematically introduced. Second, the current research status of copper alloy SLM in various areas is reviewed, focusing on the microstructure and mechanical properties of the formed parts and the changes in microstructure and mechanical properties after heat treatment. Finally, the current problems and future research directions of copper and copper alloy SLM are summarized.
Key words:  selective laser melting    copper alloy    microstructure    mechanical property    heat treatment
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(52075502;51905497)
通讯作者:  李忠华,中北大学机械工程学院副教授,硕士研究生导师。2009年中北大学机械设计制造及其自动化专业本科毕业,2012年重庆大学机械化设计及理论专业硕士毕业,2017年重庆大学机械工程专业博士毕业后到中北大学工作至今。目前主要从事增材制造技术、产品创新设计、计算机仿真等方面的研究工作。发表论文40余篇,包括International Journal of Machine Tools & Manufacture、Materials & Design、Journal of Manufacturing Process等。lzh2017@nuc.edu.cn   
作者简介:  † 共同第一作者
刘斌,中北大学材料科学与工程学院教授,博士研究生导师。1998年太原理工大学焊接工艺与设备专业本科毕业后到中北大学工作至今,2003年中北大学材料加工工程专业硕士毕业,2007年中北大学精密仪器与机械专业博士毕业。目前主要从事金属激光增材制造、激光熔覆合金组织调控及材料制备、难熔及叠层金属基复合材料特种成形等方面的研究工作。发表论文50余篇,包括Materials Science & Engineering A、Materials & Design、Optics & Laser Technology等。
索超,2021年7月毕业于太原工业学院,获得工学学士学位。现为中北大学材料科学与工程学院硕士研究生,在刘斌教授和李忠华副教授的指导下进行研究。目前主要研究领域为激光选区熔化(SLM)制备铜合金。
引用本文:    
刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
LIU Bin, SUO Chao, LI Zhonghua, KUAI Zezhou, CHEN Yanlei, TANG Xiu. Research Status of the Selective Laser Melting Fabrication of Copper Alloys. Materials Reports, 2024, 38(7): 22080129-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080129  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080129
1 Shrinivas M R, Shamanth V, Hemanth K, et al. Materials Today: Proceedings, 2022, 54, 228.
2 3trpd, 3t success with pure copper amproduction. www. 3trpd. co. uk/.
3 engineering. com, 3D-Printed Rocket Engines & The Future of Spaceflight. https://new.engineering.com/story/.
4 3D hubs, Cnc machining in Copper. https://www.3dhubs.com/cnc-machining/metal/copper/.
5 3D Inductors Reduction of production costs. GH Patent. https://www.ghinduction.com/solution/3d-inductors/.
6 Tian Q. Journal of Physics: Conference Series, 2021, 1798(1), 012045.
7 Sefene E M. Journal of Manufacturing Systems, 2022, 63, 250.
8 Li S, Snyder K, Akhanda M S, et al. International Journal of Heat and Mass Transfer, 2022, 195, 123181.
9 Silbernagel C, Gargalis L, Ashcroft I, et al. Additive Manufacturing, 2019, 29, 100831.
10 Kyomuhimbo H D, Feleni U. Electroanalysis, 2023, 35, 202100636.
11 El-wardany T I, She Y, Jagdale V N, et al. Journal of Electronic Packaging, 2018, 140(2), 020907.
12 Yan S P, Zhang A F, Liang S D, et al. Aeronautical Manufacturing Technology, 2017(17), 97 (in Chinese).
严深平, 张安峰, 梁少端, 等. 航空制造技术, 2017(17), 97.
13 Zhou Y, Chen K Y, Wen S F, et al. Applied laser, 2019, 39(3), 387 (in Chinese).
周燕, 陈柯宇, 文世峰, 等. 应用激光, 2019, 39(3), 387.
14 Ramos Grez J A, Bourell D L. In: Solid Freeform Fabrication Symposium Proceedings: Process Development Modeling Applications, Materials. Austin, 2004, pp. 203.
15 Saprykin A A, Ibragimov E A, Babakova E V. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012061.
16 Lykov P A, Safonov E V, Akhmedianov A M. Materials Science Forum, 2016, 843, 284.
17 Guan J, Zhang X, Jiang Y, et al. Rapid Prototyping Journal, 2019, 25(8), 1388.
18 Ikeshoji T T, Nakamura K, Yonehara M, et al. JOM, 2017, 70(3), 396.
19 Imai K, Ikeshoji T T, Sugitani Y, et al. Mechanical Engineering Journal, 2020, 7(2), 19.
20 Colopi M, Caprio L, Demir A G, et al. Procedia CIRP, 2018, 74, 59.
21 Colopi M, Demir A G, Caprio L, et al. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8), 2473.
22 Jadhav S D, Dadbakhsh S, Goossens L, et al. Journal of Materials Processing Technology, 2019, 270, 47.
23 Zhang X G, Li Z Y, Liu Y, et al. Laser Techonlogy, 2017, 41(6), 852 (in Chinese).
张晓刚, 李宗义, 刘艳, 等. 激光技术, 2017, 41(6), 852.
24 Zhang X G. The experiment research of selective laser melting of pure copper. Master’s Thesis, Lanzhou University of Technology, China, 2017 (in Chinese).
张晓刚. 纯铜粉末激光选区熔化成形工艺研究. 硕士学位论文, 兰州理工大学, 2017.
25 Constantin L, Wu Z, Li N, et al. Additive Manufacturing, 2020, 35, 101268.
26 Huang J, Yan X, Chang C, et al. Surface and Coatings Technology, 2020, 395, 125936.
27 Yan X, Chang C, Dong D, et al. Materials Science and Engineering: A, 2020, 789, 139615.
28 Ma Z X, Ning J, Yu B, et al. Journal of Manufacturing Processes, 2021, 72, 419.
29 Lingqin X, Guang C, Luyu Z, et al. Materials Research Express, 2020, 7(10), 106509.
30 Dai D, Gu L. Materials & Design, 2014, 55, 482.
31 Sergei S, Paver L, Rustam B, et al. Additive Manufacturing, 2016, 494, 499.
32 Jadhav S D, Dadbakhsh S, Vleugels J, et al. Materials (Basel), 2019, 12(15), 2469.
33 Corona D, Beatrici M, Sbardella E, et al. AIP Conference Proceedings, 2021, 2416(1), 020007.
34 Li Z H, Shen J B, Li H Y, et al. Chinese Journal of Lasers, 2021, 48(3), 0315001 (in Chinese).
黎振华, 申继标, 李淮阳, 等. 中国激光, 2021, 48(3), 0315001.
35 Shen J B. Study on laser absorptivity and selective laser melting forming of copper and copper alloy powder. Master’s Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese).
申继标. 铜及铜合金粉末的激光吸收率及其选区激光熔化成形研究. 硕士学位论文, 昆明理工大学, 2021.
36 Jadhav S D, Vleugels J, Kruth J P, et al. Material Design & Processing Communications, 2019, 2(2), e94.
37 Yang P, Guo X, He D, et al. Metals, 2021, 11(12), 1883.
38 Bastian G, Peter R, Bernd J, et al. Laser Sources and Applications II, 2014, 9135, 31.
39 Masuno S I, Tsukamoto M, Tojo K, et al. In: International Congress on Applications of Lasers & Electro-Optics. Atlanta, 2017, pp. 130.
40 Suwa M, Wakabayashi N, Hiroki T, et al. High-Power Diode Laser Technology XVII. 2019, 10900, 29.
41 Shibata T, Tsukamoto M, Sato Y, et al. Laser 3D Manufacturing VI, 2019, 10909, 165.
42 Green laser: 3D printing of copper and other precious metals. https://www. trumpf. cn/en_CN/products/ machines-systems/additive-production-systems/truprint-serie-1000-green-edition/
43 Trumpf demonstrates additive manufacturing with copper and gold. https://www. industrial-lasers. com/additive-manufacturing/article/16484561/trumpf-demonstrates-additive-manufacturing-with-copper-and-gold/
44 Caris J, Li D, Stephens J J, et al. Materials Science and Engineering: A, 2010, 527(3), 769.
45 Rhu J C, Kim S S, Han S Z, et al. Scripta Materialia, 1999, 42(1), 83.
46 Hermann P, Morris D G. Metallurgical and Materials Transactions A, 1994, 25(7), 1403.
47 Zhang Y, Xiao Z, Zhao Y, et al. Materials Chemistry and Physics, 2017, 199, 54.
48 Zhang G, Chen C, Wang X, et al. The International Journal of Advanced Manufacturing Technology, 2018, 96(9), 4223.
49 Zhang G, Liu S, Chen C, et al. Materials Science and Engineering: A, 2019, 763, 138132.
50 Wang J, Zhou X L, Li J, et al. Additive Manufacturing, 2020, 31, 100921.
51 Wang J, Zhou X, Li J. Additive Manufacturing, 2021, 37, 101599.
52 Zhao C, Wang Z, Li D, et al. Journal of Materials Research and Technology, 2020, 9(6), 13097.
53 Zhao C, Wang Z, Li D, et al. Journal of Alloys and Compounds, 2020, 830, 154603.
54 Zhao C. Preparation and fundamental research of the Cu-15Ni-8Sn alloy with high strength and ductility. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
赵超. 高强韧Cu-15Ni-8Sn合金的制备及相关基础研究. 博士学位论文, 华南理工大学, 2020.
55 Zhao C, Wang Z, Li D, et al. International Journal of Plasticity, 2021, 138, 102926.
56 Kim Y K, Park S H, Lee K A. Materials Characterization, 2020, 162, 110194.
57 Yang D H, Kim Y K, Park S H, et al. Journal of Alloys and Compounds, 2021, 875, 160050.
58 Kim H, Ahn J H, Han S Z, et al. Journal of Alloys and Compounds, 2020, 832, 155059.
59 Geng G, Wang D, Zhang W, et al. Materials Science and Engineering: A, 2020, 776, 138979.
60 Ventura A P, Marvel C J, Pawlikowski G, et al. Metallurgical and Materials Transactions A, 2017, 48(12), 6070.
61 Ventura A P. Microstructural evolution and mechanical property development of selective laser melted copper alloys. Ph. D. Thesis, Lehigh University, USA, 2017.
62 Zhou Y, Zeng X, Yang Z, et al. Journal of Alloys and Compounds, 2018, 743, 258.
63 Zhou Y, Chen D, Duan L, et al. Journal of Laser Applications, 2020, 32(1), 012006.
64 Palousek D, Kocica M, Pantelejev L, et al. Rapid Prototyping Journal, 2019, 25(2), 266.
65 Scudino S, Unterdörfer C, Prashanth K G, et al. Materials Letters, 2015, 156, 202.
66 Huang W, Chai L, Li Z, et al. Materials Characterization, 2016, 114, 204.
67 Mao Z F. Forming processing and properties of copper-tin alloy in selective laser melting. Ph. D. Thesis, Chongqing University, China, 2018 (in Chinese).
毛忠发. 铜锡合金的选择性激光熔化成形工艺及性能研究. 博士学位论文, 重庆大学, 2018.
68 Zhang X Y, Li X B, Tan Z, et al. Chinese Journal of Lasers, 2018, 45(10), 119 (in Chinese).
张晓雅, 李现兵, 谈震, 等. 中国激光, 2018, 45(10), 119.
69 Zhang X Y. Study on microstructure and mechancial behavior of lattice structure copper alloy prepared by laser selective melting. Master’s Thesis, Beijing University of Technology, China, 2019 (in Chinese).
张晓雅. 激光选区熔化制备点阵结构铜合金组织结构和力学行为研究. 硕士学位论文, 北京工业大学, 2019.
70 Tan Z, Zhang X, Zhou Z, et al. Journal of Alloys and Compounds, 2019, 787, 903.
71 Wang M L. Forming processing and properties of Cu-10Sn alloy and 925Ag alloy in selective laser melting. Master’s Thesis, Guangdong University of Technology, China, 2020 (in Chinese).
王明浪. Cu-10Sn合金和925Ag合金选区激光熔化成形工艺和性能研究. 硕士学位论文, 广东工业大学, 2020.
72 Zeng C, Zhang B, Hemmasian E A, et al. Additive Manufacturing, 2020, 35, 101411.
73 Wang H, Guo L, Nie Z, et al. Processing 3D Printing and Additive Manufacturing, 2021, 8(1), 13.
74 Mehta A, Zhou L, Hyer H, et al. Materials Science and Engineering: A, 2022, 838, 142775.
75 Mao Z, Zhang D Z, Wei P, et al. Materials (Basel), 2017, 10(4), 333.
76 Ventura A P, Wade C A, Pawlikowski G, et al. Metallurgical and Materials Transactions A, 2017, 48(1), 178.
77 Li X X, Wang Z J, He D Y, et al. Chinese Journal of Engineering, 2021, 43(8), 1100 (in Chinese).
李小璇, 王曾洁, 贺定勇, 等. 工程科学学报, 2021, 43(8), 1100.
78 Li X X, Wang Z J, He D Y, et al. Nonferrous Metals (Extrctive), 2021(5), 92, 111(in Chinese).
李小璇, 王曾洁, 贺定勇, 等. 有色金属(冶炼部分), 2021(5), 92.
79 Yang P, He D, Wang Z, et al. Rapid Prototyping Journal, 2021, 28(1), 10.
80 Karthik G M, Sathiyamoorthi P, Zargaran A, et al. Materialia, 2020, 13, 100861.
81 Mao Z, Zhang D Z, Jiang J, et al. Materials Science and Engineering: A, 2018, 721, 125.
82 Yi L L, Mao Z F, Zhang Z W. Journal of Sichuan University (Natural Science Edition), 2019, 56(4), 689 (in Chinese).
易力力, 毛忠发, 张正文. 四川大学学报(自然科学版), 2019, 56(4), 689.
83 Liu H, Duan D, Lin Q, et al. Ceramics International, 2022, 48(20), 30670.
84 Spierings A B, Leinenbach C, Kenel C, et al. Rapid Prototyping Journal, 2015, 21(2), 130.
85 Gan J, Gao H, Wen S, et al. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105144.
86 Ren C X, Wang Q, Hou J P, et al. Materials Science and Engineering: A, 2020, 786, 139441.
87 Pérez-landazábal J I, Recarte V, Sánchez-alarcos V, et al. Materials Science and Engineering: A, 2006, 438, 734.
88 Gargarella P, Kiminami C S, Mazzer E M, et al. Materials Research, 2015, 18(suppl 2), 35.
89 Gustmann T, Dos S J M, Gargarella P, et al. Shape Memory and Superelasticity, 2016, 3(1), 24.
90 Gustmann T, Neves A, Kühn U, et al. Additive Manufacturing, 2016, 11, 23.
91 Gustmann T, Schwab H, Kühn U, et al. Materials & Design, 2018, 153, 129.
92 Tian J, Zhu W, Wei Q, et al. Journal of Alloys and Compounds, 2019, 785, 754.
93 Tian J, Wei Q S, Zhu W Z, et al. Chinese Journal of Lasers, 2019, 46(3), 0302001 (in Chinese).
田健, 魏青松, 朱文志, 等. 中国激光, 2019, 46(3), 0302001.
94 Zhu W Z, Dang M Z, Tian J, et al. Journal of Mechanical Engineering, 2020, 56(15), 53 (in Chinese).
朱文志, 党明珠, 田健, 等. 机械工程学报, 2020, 56(15), 53.
95 Niedbalski S, Duran A, Walczak M, et al. Materials (Basel), 2019, 12(5), 794.
96 Gera D, Santos J, Kiminami C S, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(12), 3322.
97 Barik R C, Wharton J A, Wood R J K, et al. Wear, 2005, 259(1-6), 230.
98 Murray T, Thomas S, Wu Y, et al. Additive Manufacturing, 2020, 33, 101122.
99 Cui B. Preparation of Cu6AlNiSnInCe imitative gold powder and its for-ming experiment in Selective Laser Melting. Master’s Thesis, South China University of Technology, China, 2019 (in Chinese).
崔波. Cu6A1NiSnInCe仿金粉末的装备及其SLM成形试验研究. 硕士学位论文, 华南理工大学, 2019.
100 Yang C, Zhao Y J, Kang L M, et al. Materials Letters, 2018, 210, 169.
101 Zhang S, Zhu H, Hu Z, et al. Powder Technology, 2019, 342, 613.
102 Zhuo L, Song B, Li R, et al. Optics & Laser Technology, 2020, 127, 106164.
103 Correia J B, Davies H A, Sellars C M. Acta Materialia, 1997, 45(1), 177.
104 Jadhav S D, Dadbakhsh S, Chen R, et al. Advanced Engineering Materials, 2019, 22(2), 1900946.
105 Zhang S, Zhu H, Zhang L, et al. Materials Letters, 2019, 237, 306.
106 Shen J, Li Z, Li H, et al. Materials Letters, 2022, 308, 131141.
107 Uchida S, Kimura T, Nakamoto T, et al. Materials & Design, 2019, 175, 107815.
108 Chen Y, Ren S, Zhao Y, et al. Journal of Alloys and Compounds, 2019, 786, 189.
109 Guan P, Chen X, Liu P, et al. Materials Research Express, 2019, 6(11), 1165c1.
110 Jahns K, Bappert R, Böhlke P, et al. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6), 2151.
111 Ma Z, Zhang D Z, Liu F, et al. Materials & Design, 2020, 187, 108406.
112 Ma Z, Zhang K, Ren Z, et al. Journal of Alloys and Compounds, 2020, 828, 154350.
113 Sun F, Liu P, Chen X, et al. Materials (Basel), 2020, 13(21), 5028.
114 Bai Y, Zhao C, Zhang Y, et al. Materials Science and Engineering: A, 2021, 819, 141528.
115 Salvan C, Briottet L, Baffie T, et al. Materials Science and Enginee-ring: A, 2021, 826, 141915.
116 Ren Z, Zhang D Z, Fu G, et al. Materials & Design, 2021, 207, 109857.
117 Hu Z, Du Z, Yang Z, et al. Materials Science and Engineering: A, 2022, 836, 142740.
118 Zeng C, Wen H, Bernard B C, et al. Metals and Materials International, 2021, 28(1), 168.
119 Popovich A, Sufiiarov V, Polozov I, et al. Materials Letters, 2016, 179, 38.
120 Zhang D, Liu Z, Chua C. In: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria, Portugal, 2013, pp. 285.
121 Seltzman A H, Wukitch S J. Fusion Engineering and Design, 2020, 160, 111801.
122 Seltzman A H, Wukitch S J. Fusion Engineering and Design, 2020, 159, 111726.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed