Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23120100-6    https://doi.org/10.11896/cldb.23120100
  金属与金属基复合材料 |
热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能
薛赞1, 晋玺1,*, 毛周朱2, 兰爱东1, 王大雨1, 乔珺威1,3
1 太原理工大学材料科学与工程学院,太原 030024
2 太原理工大学机械与运载工程学院应用力学研究所,太原 030024
3 太原理工大学教育部先进材料界面科学与工程重点实验室,太原 030024
Thermomechanical Treatment Improves the Mechanical Properties of Cr47Ni33Co10Fe10 Multi-component Eutectic Alloys
XUE Zan1, JIN Xi1,*, MAO Zhouzhu2, LAN Aidong1, WANG Dayu1, QIAO Junwei1,3
1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 15894KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无序面心立方(FCC)+无序体心立方(BCC)结构多组元共晶合金(MCEA)Cr47Ni33Co10Fe10具有重要的工程应用价值。本工作采用多道次冷轧使合金厚度减少90%并在800 ℃下退火1 h的热机械处理策略来提高合金力学性能。Cr47Ni33Co10Fe10合金热机械处理后的屈服强度(σ0.2)为1 230 MPa,拉伸断裂应变(ε)为13%,屈服强度相对于铸态合金提高了864 MPa,是铸态合金的三倍多,且几乎没有损失塑性。高强度和高塑性的匹配来源于超细双相等轴晶组织替代了初始层片组织。本工作为提高双相共晶高熵合金的力学性能提供了一种可行的热处理工艺途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛赞
晋玺
毛周朱
兰爱东
王大雨
乔珺威
关键词:  共晶高熵合金  热机械处理  超细晶  力学性能    
Abstract: The disordered face-centered cubic (FCC)+disordered body-centered cubic (BCC) multi-component eutectic alloy (MCEA) Cr47Ni33Co10Fe10 has important engineering application value. In this work, we adopt a thermal mechanical treatment strategy of reducing alloy thickness by 90% through multiple passes of cold rolling and annealing at 800 ℃ for 1 hour to improve the mechanical properties of the alloy. The yield strength (σ0.2) of Cr47Ni33Co10Fe10 after thermomechanical treatment is 1 230 MPa, and the tensile fracture strain (ε) is 13%. The yield strength has increased by 864 MPa compared to as cast alloys, which is more than three times that of the as-cast alloy, and there is almost no loss of plasticity. The matching of high strength and high plasticity comes from the substitution of the initial lamellar structure by the duplex ultrafine equiaxed grains. The work provides a feasible heat treatment process for improving the mechanical property of dual-phase eutectic high-entropy alloys.
Key words:  eutectic high entropy alloy    thermomechanical treatment    ultra-fine grain    mechanical property
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG156  
基金资助: 国家自然科学基金(52301217);山西省应用基础研究计划项目(20210302124427);太原理工大学校基金(2022QN012);山西省高等学校科技创新项目(2021L040)
通讯作者:  *晋玺,博士,太原理工大学材料科学与工程学院讲师,主要从事共晶材料设计与强韧化相关工作。jinxi@tyut.edu.cn   
作者简介:  薛赞,太原理工大学材料科学与工程学院硕士研究生。目前主要从事Cr-Ni-Co-Fe-V系共晶高熵合金的成分设计和拉伸行为研究。
引用本文:    
薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
XUE Zan, JIN Xi, MAO Zhouzhu, LAN Aidong, WANG Dayu, QIAO Junwei. Thermomechanical Treatment Improves the Mechanical Properties of Cr47Ni33Co10Fe10 Multi-component Eutectic Alloys. Materials Reports, 2025, 39(3): 23120100-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120100  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23120100
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring:A, 2004, 375, 213.
3 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
4 Kozak R, Sologubenko A, Steurer W. Zeitschrift für Kristallographie-Crystalline Materials, 2015, 230(1), 55.
5 Pickering E J, Jones N G. International Materials Reviews, 2016, 61(3), 183.
6 Wang M, Cui H, Zhao Y, et al. Materials & Design, 2019, 180, 107893.
7 Wang M, Lu Y, Zhang G, et al. Vacuum, 2021, 184, 109905.
8 Fu Y, Li J, Luo H, et al. Journal of Materials Science & Technology, 2021, 80, 217.
9 Senkov O N, Gorsse S, Miracle D B. Acta Materialia, 2019, 175, 394.
10 Fan L, Yang T, Zhao Y, et al. Nature Communications, 2020, 11(1), 6240.
11 Yeh J W. Jom, 2013, 65, 1759.
12 Yan Y W, Yu Z H, Gao W. Materials Reports, 2022, 36(S1), 333(in Chinese).
阎亚雯, 余竹焕, 高炜, 等. 材料导报, 2022, 36(S1), 333.
13 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4(1), 6200.
14 Jin X, Bi J, Zhang L, et al. Journal of Alloys and Compounds, 2019, 770, 655.
15 Lu Y, Gao X, Jiang L, et al. Acta Materialia, 2017, 124, 143.
16 Jin X, Zhou Y, Zhang L, et al. Materials Letters, 2018, 216, 144.
17 Jin X, Xue Z, Mao Z, et al. Materials Science and Engineering: A, 2023, 877, 145136.
18 Yin B, Maresca F, Curtin W A. Acta Materialia, 2020, 188, 486.
19 Tu Y W, Zhu L H, Ke Z G, Materials Reports, 2021, 35(20), 20113(in Chinese).
涂有旺, 朱丽慧, 柯志刚, 等. 材料导报, 2021, 35(20), 20113.
20 Li H C, Wang J, Yuan R H, et al. Materials Reports, 2021, 35(17), 17010(in Chinese).
李洪超, 王军, 袁睿豪, 等. 材料导报, 2021, 35(17), 17010.
21 Zhou Z Z, Wang Z J, Jiao S S, et al. Materials Reports, 2023, 37(16), 217(in Chinese).
周珍珍, 汪佐瑾, 焦世舜, 等. 材料导报, 2023, 37(16), 217.
22 Wu Q, He F, Li J, et al. Nature Communications, 2022, 13(1), 4697.
23 Shi P, Ren W, Zheng T, et al. Nature Communications, 2019, 10(1), 489.
24 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4(3), 174.
25 Wani I S, Bhattacharjee T, Sheikh S, et al. Intermetallics, 2017, 84, 42.
26 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Journal of Alloys and Compounds, 2014, 587, 544.
27 Ahmed M Z, Bhattacharjee P P. ISIJ International, 2014, 54(12), 2844.
28 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science and Engineering: A, 2016, 675, 99.
29 Ahmed M Z, Bhattacharjee P P. ISIJ International, 2014, 54(12), 2844.
30 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Elsevier, NL, 2012, pp. 125.
31 Tripathy B, Malladi S R K, Bhattacharjee P P. Materials Science and Engineering: A, 2022, 831, 142190.
32 Kamikawa N, Huang X, Tsuji N, et al. Acta Materialia, 2009, 57(14), 4198.
33 An X H, Wu S D, Zhang Z F, et al. Scripta Materialia, 2012, 66(5), 227.
34 Li Z, Fu L, Fu B, et al. Materials Letters, 2013, 96, 1.
35 Saha R, Ueji R, Tsuji N. Scripta Materialia, 2013, 68(10), 813.
36 Ma E, Zhu T. Materials Today, 2017, 20(6), 323.
37 Shi P, Zhong Y, Li Y, et al. Materials Today, 2020, 41, 62.
38 Wang Y Q, Zhu G H, Chen Q W, et al. Materials Reports, 2018, 32(19), 3414(in Chinese).
王永强, 朱国辉, 陈其伟, 等. 材料导报, 2018, 32(19), 3414.
39 Wu X, Zhu Y. Materials Research Letters, 2017, 5(8), 527.
40 Bhattacharjee T, Wani I S, Sheikh S, et al. Scientific Reports, 2018, 8(1), 3276.
41 Fu P, Su H, Li Z, et al. Journal of Alloys and Compounds, 2022, 921, 166141.
42 Yang H, Li J, Guo T, et al. Metals and Materials International, 2019, 25, 1145.
43 Li H, Wang J, Yang H, et al. Materials Characterization, 2022, 191, 112156.
44 Xiong T, Zheng S, Pang J, et al. Scripta Materialia, 2020, 186, 336.
45 Zhang L, Amar A, Zhang M, et al. Science China Materials, 2023, 66(11), 4197.
46 Guo T, Li J, Wang J, et al. Materials Science and Engineering: A, 2018, 729, 141.
47 Peng P, Feng X, Li S, et al. Journal of Alloys and Compounds, 2023, 939, 168843.
48 Shen Q, Kong X, Chen X. Materials Science and Engineering: A, 2021, 815, 141257.
49 Shabani A, Toroghinejad M R. Materials Characterization, 2019, 154, 253.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[10] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[11] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[12] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[13] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[14] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed