Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22040216-6    https://doi.org/10.11896/cldb.22040216
  无机非金属及其复合材料 |
河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理
郑琨鹏1, 葛好升2,3, 李正川1, 刘贵应1, 田光文1, 王万值1, 徐国华1, 孙振平2,3,*
1 中铁二院重庆勘察设计研究院有限责任公司,重庆 400023
2 同济大学先进土木工程材料教育部重点实验室,上海 201804
3 同济大学材料科学与工程学院,上海 201804
Influence and Mechanism of River Sand and Quartz Sand on Properties of Steam-cured Ultra-high Performance Concrete
ZHENG Kunpeng1, GE Haosheng2,3, LI Zhengchuan1, LIU Guiying1, TIAN Guangwen1, WANG Wanzhi1, XU Guohua1, SUN Zhenping2,3,*
1 CREEC(Chongqing) Survey, Design and Research Co., Ltd., Chongqing 400023, China
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
3 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 8223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究分别选用颗粒粒径分布相近的河砂与石英砂制备了不同胶砂比的超高性能混凝土(UHPC),探究了两种细集料对不同胶砂比情况下UHPC性能的影响。结果表明:(1)采用河砂制备的UHPC的扩展度稍大于采用石英砂者;(2)采用河砂制备的胶砂比为1.0的UHPC的抗压强度和抗拉强度最高,表现出明显的应变硬化现象,采用石英砂所制备的胶砂比为0.8的UHPC的抗拉强度最低,几乎无应变硬化现象;(3)细集料种类及胶砂比对水泥水化反应和掺合料火山灰反应的影响有限,蒸养条件下,硬化浆体中几乎无Ca(OH)2存在;(4)UHPC内孔隙的直径大多小于1 μm,胶砂比相同时,采用石英砂制备的UHPC所含孔径小于1 μm孔的数量多于采用河砂者;(5)与石英砂相比,河砂与硬化浆体的界面过渡区较为致密,且采用河砂制备的UHPC中浆体对纤维的包裹性也较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑琨鹏
葛好升
李正川
刘贵应
田光文
王万值
徐国华
孙振平
关键词:  超高性能混凝土  石英砂  河砂  胶砂比  蒸养  力学性能  微观结构    
Abstract: River sand and quartz sand with similar particle size distributions were used for developing ultra-high performance concrete (UHPC) with different binder to sand ratios. Multiple properties of UHPC using two types of fine aggregates with different binder to sand ratios in fresh and hardened state were investigated with various methods. The results showed that, UHPC prepared with river sand had a better workability than that with quartz sand. UHPC prepared with river sand and binder to sand ratio of 1.0 had the highest compressive strength and tensile strength as well as a remarkable strain hardening behavior. UHPC prepared with quartz sand and binder to sand ratio of 0.8 had the lowest tensile strength and almost no strain hardening behavior. It was found that, sand type and binder to sand ratio had limited impact on products of cement hydration and pozzolanic reaction. A depletion of Ca(OH)2 in hardened paste was found in all samples. The diameter of majority pores present in UHPC was smaller than 1 μm. Compared with UHPC prepared with river sand, that with quartz sand had more pores with a diameter smaller than 1 μm. ITZ between river sand and hardened paste was denser than that between quartz sand and hardened paste. In addition, the bond between paste and fiber of UHPC prepared with river sand was better than that with quartz sand based on visual inspection of SEM images.
Key words:  UHPC    quartz sand    river sand    binder to sand ratio    steam-curing    mechanical property    micro-structure
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TV431+.3  
基金资助: 重庆市科技局专项项目(cstc2020kqjscx-phxm1594);上海市科委项目(19DZ1202702;19DZ1201404);上海市建委专项课题(2021-001-002);住建部项目(K20200988)
通讯作者:  孙振平,同济大学材料科学与工程学院教授、博士研究生导师。1992年7月、1995年3月和2002年7月于同济大学获得材料学学士、硕士和博士学位,现任同济大学材料科学与工程学院建材系主任,主要从事混凝土外加剂、高强和高性能混凝土、混凝土耐久性等方面的研究。grtszhp@163.com   
作者简介:  郑琨鹏,2009年6月、2012年3月分别于同济大学获得材料学学士和硕士学位,2017年1月于根特大学(比利时)获得博士学位。就职于中铁二院重庆勘察设计研究院有限责任公司,主要研究领域为超高性能混凝土的工程应用技术与混凝土耐久性。
引用本文:    
郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
ZHENG Kunpeng, GE Haosheng, LI Zhengchuan, LIU Guiying, TIAN Guangwen, WANG Wanzhi,
XU Guohua, SUN Zhenping. Influence and Mechanism of River Sand and Quartz Sand on Properties of Steam-cured Ultra-high Performance Concrete. Materials Reports, 2024, 38(7): 22040216-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040216  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22040216
1 Zhao J, Shi H X, Lu X Y. Properties and test methods of ultra-high performance concrete, China Building Materials Industry Press, China, 2019, pp. 55 (in Chinese).
赵筠, 师海霞, 路新瀛. 超高性能混凝土基本性能与试验方法, 中国建材工业出版社. 2019, pp.55.
2 Sobuz H R, Visintin P, Ali M M, et al. Construction and Building Materials, 2016, 111, 251.
3 Wang J Y, Yan Z H, Geng L P. Journal of Harbin Institute of Technology, 2019, 51(6), 19(in Chinese).
王俊颜, 闫珠华, 耿莉萍. 哈尔滨工业大学学报, 2019, 51(6), 19.
4 Yang R, Yu R, Shui Z, et al. Cement and Concrete Composites, 2019, 99, 203.
5 Ding Q J, Peng C K Y, Hu J, et al. Bulletin of the Chinese Ceramic Society, 2019(2), 488(in Chinese).
丁庆军, 彭程康琰, 胡俊, 等. 硅酸盐通报, 2019(2), 488.
6 Zhang G Z, Wang Y X, Ge J C, et al. Journal of Building Materials, 2021, 24(3), 500(in Chinese).
张高展, 王宇譞, 葛竞成, 等. 建筑材料学报, 2021, 24(3), 500.
7 Zhou Min, Wu Zemei, Ouyang Xue, et al. Materials Reports, 2023, 37(18), 22060073 (in Chinese).
周敏, 吴泽媚, 欧阳雪, 等. 材料导报, 2023, 37(18), 22060073.
8 Chen Y W, Li Z M, Wu K W. Concrete, 2018(3), 68(in Chinese).
陈彦文, 李子明, 吴克威. 混凝土, 2018(3), 68.
9 Kang S T, Lee K S, Choi J I, et al. International Journal of Concrete Structures and Materials, 2016, 10(3), S33.
10 Choi J I, Song K I, Song J K, et al. Composite Structures, 2016, 138, 116.
11 Park S H, Dong J K, Ryu G S, et al. Cement and Concrete Composites, 2012, 34, 172.
12 Sukhoon P, Hyeong K, Bang Y L. Cement and Concrete Composites, 2017, 84, 28.
13 Yang Yibo, Xia Yinggan, Liu Shaokun, et al. Materials Reports, 2023, 37(4), 22020028 (in Chinese).
杨医博, 夏英淦, 刘少坤, 等. 材料导报, 2023, 37(4), 22020028.
14 Pyo S, Kim H K, Lee B Y. Cement and Concrete Composites, 2017, 84, 28.
15 Shen P, Lu L, He Y, et al. Cement and Concrete Research, 2019, 118, 1.
16 Ge X L, Zhu H Y. Journal of Building Materials, 2020, 23(4), 811 (in Chinese).
葛晓丽, 褚洪岩. 建筑材料学报, 2020, 23(4), 811.
17 Scrivener K L, Laugesen C P. Interface Science, 2004, 12, (4), 411.
18 Bian Chen, Guo Junyuan, Xiao Jianzhuang, et al. Materials Reports, 2023, 37(23), 22070261 (in Chinese).
边晨, 郭君渊, 肖建庄, 等. 材料导报, 2023, 37(23), 22070261.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[6] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[9] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[13] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[14] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[15] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed