Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23100148-12    https://doi.org/10.11896/cldb.23100148
  金属与金属基复合材料 |
高熵合金高周和低周疲劳行为研究进展
宋少龙, 王晓地*, 张哲, 任学冲, 栾本利
北京科技大学国家材料服役安全科学中心,北京 100083
Research Progresses in High- and Low-cycle Fatigue Behaviors of High-entropy Alloys
SONG Shaolong, WANG Xiaodi*, ZHANG Zhe, REN Xuechong, LUAN Benli
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 66517KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金因具有优异的性能,如高强度、高韧性、良好的耐磨性和耐蚀性等,成为材料领域的研究热点之一。随着对高熵合金基本力学性能研究的深入,其长期服役性能——疲劳性能逐渐受到关注。根据目前文献报道,高熵合金具有优良的抗疲劳性能,具备成为工程材料的潜力。然而,目前高熵合金疲劳研究体系众多,且制备工艺方法和微观结构等复杂多样,导致其疲劳分散性很大。因此,有必要对相关工作进行归纳和总结,加深有关认识和理解,从而推动高熵合金的进一步发展。本文主要从不同体系高熵合金的微观结构出发,详细介绍了疲劳研究的最新成果,总结并对比了高熵合金的高周和低周疲劳性能及相应的疲劳机理,最后对目前研究中存在的问题进行了说明以及对未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋少龙
王晓地
张哲
任学冲
栾本利
关键词:  高熵合金  微观结构  疲劳行为  疲劳机理    
Abstract: High-entropy alloys (HEAs) have been the focus in the field of material research because of their excellent properties such as high strength, high toughness, good wear resistance and corrosion resistance. With in-depth research and understanding of the basic mechanical properties of HEAs, their long-term service performance — fatigue property is attracting more and more interests. According to previous reports, HEAs possess good fatigue resistance thus having great potential as engineering materials. However, the complexities of various HEAs systems along with their preparation processes and microstructures lead to large fatigue scatter. Therefore, it is important to acquire comprehensive understan-ding in order to promote further development of HEAs. In this paper, the latest results of fatigue research in different HEAs are introduced, primarily from the viewpoint of their microstructures. Besides, high-cycle-fatigue and low-cycle-fatigue properties of HEAs as well as the corresponding failure mechanisms are summarized and compared. Finally, existing issues in current research and the prospects of future development are also assessed.
Key words:  high-entropy alloy    microstructure    fatigue behavior    fatigue mechanism
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG131  
基金资助: 北京科技大学青年教师学科交叉研究项目(中央高校基本科研业务费专项资金)(FRF-IDRY-22-029)
通讯作者:  *王晓地,博士,北京科技大学国家材料服役安全科学中心副研究员、硕士研究生导师。目前主要从事先进金属材料组织调控与疲劳性能优化等方面的研究工作。wangxiaodi@ustb.edu.cn   
作者简介:  宋少龙,博士研究生,目前主要研究领域为高熵合金的组织调控与疲劳性能优化。
引用本文:    
宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
SONG Shaolong, WANG Xiaodi, ZHANG Zhe, REN Xuechong, LUAN Benli. Research Progresses in High- and Low-cycle Fatigue Behaviors of High-entropy Alloys. Materials Reports, 2025, 39(3): 23100148-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100148  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23100148
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375-377, 213.
3 Senkov O N, Scott J M, Senkova S V, et al. Journal of Alloys and Compounds, 2011, 509(20), 6043.
4 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
5 Sun S J, Tian Y Z, Lin H R, et al. Materials & Design, 2017, 133, 122.
6 Gali A, George E P. Intermetallics, 2013, 39, 74.
7 Li D Y, Zhang Y. Intermetallics, 2016, 70, 24.
8 Li Z M, Pradeep K G, Deng Y, et al. Nature, 2016, 534(7606), 227.
9 Li Q, Zhang T W, Qiao J W, et al. Materials Science and Engineering A, 2019, 767, 138424.
10 Hou J X, Zhang M, Ma S G, et al. Materials Science and Engineering A, 2017, 707, 593.
11 Li H C, Wang J, Yang H X, et al. Materials Characterization, 2022, 191, 112156.
12 Gwalani B, Gorsse S, Choudhuri D, et al. Scripta Materialia, 2019, 162, 18.
13 Guennec B, Kentheswaran V, Perrière L, et al. Materialia, 2018, 4, 348.
14 Chen S Y, Li W D, Wang L, et al. Journal of Materials Science & Technology, 2022, 114, 191.
15 Liu K, Nene S S, Frank M, et al. Applied Materials Today, 2019, 15, 525.
16 Lee G T, Won J W, Lim K R, et al. Metals and Materials International, 2020, 27(4), 593.
17 Li W D, Chen S Y, Liaw P K. Scripta Materialia, 2020, 187, 68.
18 Li W D, Xie D, Li D Y, et al. Progress in Materials Science, 2021, 118, 100777.
19 Chen P, Lee C, Wang S Y, et al. Science China Technological Sciences, 2017, 61(2), 168.
20 Bahadur F, Biswas K, Gurao N P. International Journal of Fatigue, 2020, 130, 105258.
21 Smith K N, Watson P, Topper T H. Journal of Materials, 1970, 5, 767.
22 Basquin O H. American Society for Testing and Materials Proceedings, 1910, 10, 625.
23 Liu K, Nene S S, Frank M, et al. Materials Research Letters, 2018, 6(11), 613.
24 Tang Z, Yuan T, Tsai C W, et al. Acta Materialia, 2015, 99, 247.
25 Shukla S, Wang T H, Cotton S, et al. Scripta Materialia, 2018, 156, 105.
26 Liu K M, Komarasamy M, Gwalani B, et al. Scripta Materialia, 2019, 158, 116.
27 Liu K M, Gwalani B, Komarasamy M, et al. Materials Science and Engineering A, 2019, 760, 225.
28 Kuzminova Y O, Firsov D G, Dagesyan S A, et al. Journal of Alloys and Compounds, 2021, 863, 158609.
29 Kim Y K, Baek M S, Yang S S, et al. Additive Manufacturing, 2021, 38, 101832.
30 Kim Y K, Ham G S, Kim H S, et al. Intermetallics, 2019, 111, 106486.
31 Tian Y Z, Sun S J, Lin H R, et al. Journal of Materials Science & Technology, 2019, 35(3), 334.
32 Suzuki K, Koyama M, Hamada S, et al. International Journal of Fatigue, 2020, 133, 105418.
33 Kashaev N, Ventzke V, Petrov N, et al. Materials Science and Enginee-ring A, 2019, 766, 138358.
34 Xu L, Jia Y, Wang Z, et al. Journal of Materials Science & Technology, 2023, 148, 90.
35 Fang Y, Wang K S, Wang W, et al. Journal of Plasticity Engineering, 2022, 29(12), 203 (in Chinese).
36 Sun S J, Tian Y Z, Lin H R, et al. Materials Science and Engineering A, 2018, 712, 603.
37 Gwalani B, Soni V, Lee M, et al. Materials & Design, 2017, 121, 254.
38 Gwalani B, Gorsse S, Choudhuri D, et al. Acta Materialia, 2018, 153, 169.
39 Gwalani B, Soni V, Choudhuri D, et al. Scripta Materialia, 2016, 123, 130.
40 Li D Y, Li C X, Feng T, et al. Acta Materialia, 2017, 123, 285.
41 Li D Y, Gao M C, Hawk J A, et al. Journal of Alloys and Compounds, 2019, 778, 23.
42 Zhang L J, Yu P F, Zhang C Z, et al. Scripta Materialia, 2021, 203, 114053.
43 Tang Q H, Huang Y, Huang Y Y, et al. Materials Letters, 2015, 151, 126.
44 Picak S, Wegener T, Sajadifar S V, et al. Acta Materialia, 2021, 205, 116540.
45 Jin M, Piglione A, Dovgyy B, et al. Additive Manufacturing, 2020, 36, 101584.
46 Dobbelstein H, Gurevich E L, George E P, et al. Additive Manufacturing, 2019, 25, 252.
47 Kuzminova Y, Firsov D, Dudin A, et al. Intermetallics, 2020, 116, 106651.
48 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
49 Bartosiewicz L, Krause A R, Spis A, et al. Journal of Materials Engineering and Performance, 1992, 1, 67.
50 Lu Y P, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
51 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science and Engineering A, 2016, 675, 99.
52 Bahadur F, Jain R, Biswas K, et al. International Journal of Fatigue, 2022, 155, 106545.
53 Lu K J, Chauhan A, Tirunilai A S, et al. Acta Materialia, 2021, 215, 117089.
54 Lu K J, Chauhan A, Litvinov D, et al. Materials Science and Engineering A, 2020, 791, 139781.
55 Niendorf T, Wegener T, Li Z M, et al. Scripta Materialia, 2018, 143, 63.
56 Shams S A A, Bae J W, Kim J N, et al. Journal of Materials Science & Technology, 2022, 115, 115.
57 Shams S A A, Jang G, Won J W, et al. Materials Science and Enginee-ring A, 2020, 792, 139661.
58 Shams S A A, Kim G, Won J W, et al. Materials Science and Enginee-ring A, 2021, 810, 140985.
59 Xu L, Jia Y, Wu S, et al. Intermetallics, 2023, 152, 107751.
60 Lu K J, Knöpfle F, Chauhan A, et al. International Journal of Fatigue, 2022, 163, 107075.
61 Wang A G, An X H, Gu J, et al. Journal of Materials Science & Technology, 2020, 39, 1.
62 Jin M, Hosseini E, Holdsworth S R, et al. Additive Manufacturing, 2022, 51, 102600.
63 Lu K J, Chauhan A, Walter M, et al. Scripta Materialia, 2021, 194, 113667.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[9] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[10] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[11] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[12] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[13] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[14] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[15] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed