Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23100105-9    https://doi.org/10.11896/cldb.23100105
  高分子与聚合物基复合材料 |
植入体表面光响应抗菌涂层的研究进展
王振峰1, 伞宏赡1,*, 田萌萌1, 徐志超1, 关意佳1, 杨志波2,3,*
1 河南理工大学材料科学与工程学院,河南 焦作 454000
2 鹤壁职业技术学院智能制造学院,河南 鹤壁 458030
3 河南理工大学机械与动力工程学院,河南 焦作 454000
Research Progress of Photoresponsive Antimicrobial Coatings on Implant Surfaces
WANG Zhenfeng1, SAN Hongshan1,*, TIAN Mengmeng1, XU Zhichao1, GUAN Yijia1, YANG Zhibo2,3,*
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 School of Intelligent Manufacturing, Hebi Polytechnic, Hebi 458030, Henan, China
3 School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 19556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新兴的非药物抗菌策略,光响应抗菌在治疗植入体相关感染方面展现出极大的潜力,如何赋予植入体光刺激抗菌能力成为该领域研究的热点。在该策略中光敏材料的种类及与基体的结合方式对抗菌效果有直接的影响。本文综述了目前被应用于植入体表面的四类光敏材料——有机共轭聚合物、近红外荧光分子、二维材料、无机半导体材料,并介绍了其在涂层中的存在形式、对外源光刺激的响应效果和机理、抗菌性能以及生物相容性。最后客观地分析了光响应涂层仍需解决的一些问题,并对未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振峰
伞宏赡
田萌萌
徐志超
关意佳
杨志波
关键词:  植入体相关感染  涂层  光响应抗菌  光敏材料  生物相容性    
Abstract: As an emerging non-pharmacological antimicrobial strategy, photoresponsive antimicrobial has displayed great potential in the treatment of implant-associated infections. How to endow implants with light-stimulated antimicrobial capacity has become a hot topic in this field. In this strategy the type of photosensitive material and its binding mode with the substrate directly impact the antimicrobial effect. This paper reviews four types of photosensitive materials currently being applied to implant surfaces, i.e., organic conjugated polymers, near-infrared fluorescent molecules, two-dimensional materials, and inorganic semiconductor materials, and clarifies the relevant aspects including their presence forms in coa-tings, responses and mechanisms to external light stimuli, antimicrobial properties, and biocompatibility. It ends with a detached analysis on some of the issues that still need to be addressed in photoresponsive coatings, and a prospective discussion about the future development trends of the field.
Key words:  implant-associated infection    coating    photoresponsive antibacterial    photosensitive material    biocompatibility
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB34  
基金资助: 河南理工大学博士基金(B2022-28);中国博士后基金面上项目(2022M711054);河南省青年基金(232300420302);国家自然科学基金河南联合基金(U190410213);国家自然科学基金(21907024);中国博士后科学基金面上项目(2023M730987);河南省博士后科研项目(HN2022035);河南理工大学博士基金(B2019-37);河南省高校基本科研业务费专项资金(NSFRF230407);国家自然科学基金青年项目(52103290)
通讯作者:  *伞宏赡,河南理工大学材料科学与工程学院讲师、硕士研究生导师。目前主要从事金属表面生物功能化、增材制造等方面的研究工作。hongshansan@163.com; 杨志波,河南理工大学机械与动力工程学院教授、博士研究生导师,鹤壁职业技术学院任副院长。目前主要从事新材料应用与精密加工技术研究。yangzhibo@hpu.edu.cn   
作者简介:  王振峰,河南理工大学材料科学与工程学院硕士研究生,在伞宏赡老师的指导下进行研究。目前主要研究领域为金属表面生物功能化。
引用本文:    
王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
WANG Zhenfeng, SAN Hongshan, TIAN Mengmeng, XU Zhichao, GUAN Yijia, YANG Zhibo. Research Progress of Photoresponsive Antimicrobial Coatings on Implant Surfaces. Materials Reports, 2025, 39(3): 23100105-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100105  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23100105
1 Arciola C R, Campoccia D, Montanaro L. Nature Reviews Microbiology, 2018, 16(7), 397.
2 Chua S L, Yam J K H, Hao P, et al. Nature Communications, 2016, 7, 10750.
3 Rybtke M, Hultqvist L D, Givskov M, et al. Journal of Molecular Biology, 2015, 427(23), 3628.
4 Min J, Choi K Y, Dreaden E C, et al. ACS Nano, 2016, 10(4), 4441.
5 Shen X K, Zhang Y Y, Ma P P, et al. Biomaterials, 2019, 212, 1.
6 Zhang L, Guo J Q, Huang X Y, et al. Journal of Materials Chemistry B, 2016, 4(21), 3788.
7 Gao A, Hang R Q, Huang X B, et al. Biomaterials, 2014, 35(13), 4223.
8 Li J H, Liu X Y, Qiao Y Q, et al. Colloids and Surfaces B:Biointerfaces, 2014, 113, 134.
9 Manivasagam V K, Perumal G, Arora H S, et al. Journal of Biomedical Materials Research Part A, 2022, 110(7), 1314.
10 Storm W L, Youn J, Reighard K P, et al. Acta Biomaterialia, 2014, 10(8), 3442.
11 Liu B, Xiao S, Xu B, et al. Corrosion & Protection, 2023, 44(10), 18 (in Chinese).
刘兵, 肖松, 徐兵, 等. 腐蚀与防护, 2023, 44(10), 18.
12 Karaman D Ş, Ercan U K, Bakay E, et al. Advanced Functional Materials, 2020, 30(15), 1908783.
13 Varon E, Blumrosen G, Sinvani M, et al. International Journal of Mole-cular Sciences, 2022, 23(4), 2286.
14 Dai T, He W M, Tu S S, et al. Bioactive Materials, 2022, 17, 18.
15 Agostinis P, Berg K, Cengel K A, et al. CA:A Cancer Journal for Clinicians, 2011, 61(4), 250.
16 Fan W P, Huang P, Chen X Y. Chemical Society Reviews, 2016, 45(23), 6488.
17 Chilakamarthi U, Giribabu L. Chemical Record, 2017, 17(8), 775.
18 Ma H S, Jiang C, Zhai D, et al. Advanced Functional Materials, 2016, 26(8), 1197.
19 Xu Y Y, Zhao S Y, Weng Z Z, et al. ACS Applied Materials & Interfaces, 2020, 12(49), 54497.
20 Faris F, Wickramasinghe Y, Thorniley M, et al. Biochemical Society Transactions, 1991, 19(2), 514.
21 Qi M L, Li X, Sun X L, et al. Dental Materials, 2019, 35(11), 1665.
22 Gong W T, Deng X R, Dong K X, et al. Polymer Chemistry, 2021, 12(21), 3153.
23 Wang C A, Zhang J P, Nie K, et al. Catalysis Science & Technology, 2021, 11(11), 3799.
24 Yang X H, Wang H J, Lu X F, et al. Acta Chimica Sinica, 2009, 67(11), 1166 (in Chinese).
杨晓晖, 王红军, 陆希峰, 等. 化学学报, 2009, 67(11), 1166.
25 Yan X, Liang Z Q, Zhang X B, et al. Acta Materiae Compositae Sinica, 2023, 40(6), 3562 (in Chinese).
晏旭, 梁作芹, 张晓波, 等. 复合材料学报, 2023, 40(6), 3562.
26 Yu B, Wang D A, Ye Q, et al. Chemical Communications, 2009, 28(44), 6789.
27 Chen Z J, Ding S L, Lyu J J, et al. Chinese Journal of Synthetic Chemistry, 2023, 31(8), 573 (in Chinese).
陈正军, 丁尚丽, 吕佳佳, 等. 合成化学, 2023, 31(8), 573.
28 Hu J W, Ding Y, Tao B L, et al. Bioactive Materials, 2022, 18, 228.
29 Deng Y, Shi J C, Chan Y K, et al. Advanced Healthcare Materials, 2022, 11(14), 2200641.
30 Wu B B, Li Y, Su K, et al. Journal of Hazardous Materials, 2019, 377, 227.
31 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
32 Han Q Y, Shao M Z, Zhang D D, et al. Chinese Journal of Analytical Chemistry, 2023, 51(1), 53 (in Chinese).
韩庆怡, 邵明政, 张丁丁, 等. 分析化学, 2023, 51(1), 53.
33 Shi J Y, Tian H L, Peng L Y, et al. Journal of Controlled Release, 2022, 352, 766.
34 Li N, Wu G L, Tang L, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46362.
35 Yang L, Huang B, Hu S Q, et al. Nano Research, 2022, 15(5), 4285.
36 Zeng J K, Wang Y T, Sun Z Y, et al. Chemical Engineering Journal, 2020, 394, 125017.
37 Wang X H, Tan L, Liu X M, et al. Biomaterials Science, 2018, 6(9), 2460.
38 Tan L, Li J, Liu X M, et al. Advanced Materials, 2018, 30(31), 1801808.
39 Li M, Li L Q, Su K, et al. Advanced Science, 2019, 6(17), 1900599.
40 Lee H P, Gaharwar A K. Advanced Science, 2020, 7(17), 2000863.
41 Tegou E, Magana M, Katsogridaki A E, et al. Biomaterials, 2016, 89, 38.
42 Wang H T, Yuan H T, Hong S S, et al. Chemical Society Reviews, 2015, 44(9), 2664.
43 Ju W W, Li T W, Yong Y L, et al. Journal of Atomic and Molecular Physics, 2015, 32(2), 329 (in Chinese).
琚伟伟, 李同伟, 雍永亮, 等. 原子与分子物理学报, 2015, 32(2), 329.
44 Mo S D, Ching W Y. Physical Review B, Condensed Matter, 1995, 51(19), 13023.
45 Hao Q, Xie C A, Huang Y M, et al. Chinese Journal of Catalysis, 2020, 41(2), 249.
46 Hu C, Yang Y J, Lin Y Q, et al. Advanced Drug Delivery Reviews, 2021, 178, 113967.
47 Gao Y C, Kang K, Luo B, et al. Regenerative Biomaterials, 2022, 9, rbac24.
48 Ji H W, Sun H J, Qu X G. Advanced Drug Delivery Reviews, 2016, 105, 176.
49 Feng Z Z, Liu X M, Tan L, et al. Small, 2018, 14(21), 1704347.
50 Lin T R, Jiang G Y, Lin D X, et al. ACS Applied Bio Materials, 2022, 5(5), 2347.
51 Fang J, Wan Y, Sun Y, et al. Chemical Engineering Journal, 2022, 435, 134935.
52 Deng Y, Gao X Y, Shi X L, et al. Chemistry of Materials, 2020, 32(5), 2180.
53 Wang S, Duan C Y, Yang W Z, et al. Nanoscale, 2020, 12(22), 11936.
54 Chai M Z, An M W, Zhang X Y, et al. Rare Metals, 2022, 41(2), 540.
55 Zhu M, Liu X M, Tan L, et al. Journal of Hazardous Materials, 2020, 383, 121122.
56 Bose S, Surendhiran D, Chun B S, et al. Colloids and Surfaces B:Biointerfaces, 2022, 219, 112807.
57 Han X, Zhang G N, Chai M Z, et al. Biomedical Materials, 2021, 16(2), 25018.
58 Yuan Z, Tao B L, He Y, et al. Biomaterials, 2019, 217, 119290.
59 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
60 Han J, Jang E K, Ki M R, et al. Journal of Industrial and Engineering Chemistry, 2022, 112, 258.
61 Hou Y K, Mushtaq A, Tang Z, et al. Journal of Science-Advanced Materials and Devices, 2022, 7(2), 100417.
62 Shi J P, Li J, Wang Y, et al. Chemical Engineering Journal, 2022, 431, 133714.
63 Linsebigler A L, Lu G Q, Yates J T. Chemical Reviews, 1995, 95(3), 735.
64 Li N, Zhang W, Wang D L, et al. Chemistry an Asian Journal, 2022, 17(23), e202200822.
65 Arun J, Nachiappan S, Rangarajan G, et al. Environmental Chemistry Letters, 2023, 21(1), 339.
66 Cao X N, Hu J H, Zhang M L, et al. Journal of Zhejiang Normal University(Natural Science Edition), 2022, 45(3), 315 (in Chinese).
曹潇楠, 胡静慧, 张敏丽, 等. 浙江师范大学学报(自然科学版), 2022, 45(3), 315.
67 Yang M G, Qiu S, Coy E, et al. Advanced Materials, 2022, 34(6), 2106314.
68 Zhang G N, Wu Z Z, Yang Y Q, et al. Chemical Engineering Journal, 2022, 428, 131155.
69 Zhang X Y, Zhang G N, Chai M Z, et al. Bioactive Materials, 2021, 6(1), 12.
70 Lu S X, Li R Y, Chai M Z, et al. Colloids and Surfaces B:Biointerfaces, 2022, 217, 112695.
71 Zhang G N, Zhang X Y, Yang Y Q, et al. Advanced Materials Interfaces, 2020, 7(1), 1901706.
72 Chai M Z, An M W, Zhang X Y. Materials Science & Engineering C-Materials for Biological Applications, 2021, 129, 112416.
73 Zhang G N, Zhang X Y, Yang Y Q, et al. Biomaterials Science, 2020, 8(1), 391.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[3] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[4] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[5] 吴法霖, 邓贤明, 张天才, 程云涛, 陈坤, 高琴, 孙宽. 自适应变色迷彩涂层制备及性能研究[J]. 材料导报, 2025, 39(1): 24080036-5.
[6] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[7] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[8] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[9] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[10] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[11] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[12] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[13] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[14] 笪强, 马国政, 康嘉杰, 黄艳斐, 周永宽, 王海斗. 耐磨耐蚀高熵合金涂层性能研究进展[J]. 材料导报, 2024, 38(24): 23110145-10.
[15] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed