Research Progress of Photoresponsive Antimicrobial Coatings on Implant Surfaces
WANG Zhenfeng1, SAN Hongshan1,*, TIAN Mengmeng1, XU Zhichao1, GUAN Yijia1, YANG Zhibo2,3,*
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China 2 School of Intelligent Manufacturing, Hebi Polytechnic, Hebi 458030, Henan, China 3 School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Abstract: As an emerging non-pharmacological antimicrobial strategy, photoresponsive antimicrobial has displayed great potential in the treatment of implant-associated infections. How to endow implants with light-stimulated antimicrobial capacity has become a hot topic in this field. In this strategy the type of photosensitive material and its binding mode with the substrate directly impact the antimicrobial effect. This paper reviews four types of photosensitive materials currently being applied to implant surfaces, i.e., organic conjugated polymers, near-infrared fluorescent molecules, two-dimensional materials, and inorganic semiconductor materials, and clarifies the relevant aspects including their presence forms in coa-tings, responses and mechanisms to external light stimuli, antimicrobial properties, and biocompatibility. It ends with a detached analysis on some of the issues that still need to be addressed in photoresponsive coatings, and a prospective discussion about the future development trends of the field.
1 Arciola C R, Campoccia D, Montanaro L. Nature Reviews Microbiology, 2018, 16(7), 397. 2 Chua S L, Yam J K H, Hao P, et al. Nature Communications, 2016, 7, 10750. 3 Rybtke M, Hultqvist L D, Givskov M, et al. Journal of Molecular Biology, 2015, 427(23), 3628. 4 Min J, Choi K Y, Dreaden E C, et al. ACS Nano, 2016, 10(4), 4441. 5 Shen X K, Zhang Y Y, Ma P P, et al. Biomaterials, 2019, 212, 1. 6 Zhang L, Guo J Q, Huang X Y, et al. Journal of Materials Chemistry B, 2016, 4(21), 3788. 7 Gao A, Hang R Q, Huang X B, et al. Biomaterials, 2014, 35(13), 4223. 8 Li J H, Liu X Y, Qiao Y Q, et al. Colloids and Surfaces B:Biointerfaces, 2014, 113, 134. 9 Manivasagam V K, Perumal G, Arora H S, et al. Journal of Biomedical Materials Research Part A, 2022, 110(7), 1314. 10 Storm W L, Youn J, Reighard K P, et al. Acta Biomaterialia, 2014, 10(8), 3442. 11 Liu B, Xiao S, Xu B, et al. Corrosion & Protection, 2023, 44(10), 18 (in Chinese). 刘兵, 肖松, 徐兵, 等. 腐蚀与防护, 2023, 44(10), 18. 12 Karaman D Ş, Ercan U K, Bakay E, et al. Advanced Functional Materials, 2020, 30(15), 1908783. 13 Varon E, Blumrosen G, Sinvani M, et al. International Journal of Mole-cular Sciences, 2022, 23(4), 2286. 14 Dai T, He W M, Tu S S, et al. Bioactive Materials, 2022, 17, 18. 15 Agostinis P, Berg K, Cengel K A, et al. CA:A Cancer Journal for Clinicians, 2011, 61(4), 250. 16 Fan W P, Huang P, Chen X Y. Chemical Society Reviews, 2016, 45(23), 6488. 17 Chilakamarthi U, Giribabu L. Chemical Record, 2017, 17(8), 775. 18 Ma H S, Jiang C, Zhai D, et al. Advanced Functional Materials, 2016, 26(8), 1197. 19 Xu Y Y, Zhao S Y, Weng Z Z, et al. ACS Applied Materials & Interfaces, 2020, 12(49), 54497. 20 Faris F, Wickramasinghe Y, Thorniley M, et al. Biochemical Society Transactions, 1991, 19(2), 514. 21 Qi M L, Li X, Sun X L, et al. Dental Materials, 2019, 35(11), 1665. 22 Gong W T, Deng X R, Dong K X, et al. Polymer Chemistry, 2021, 12(21), 3153. 23 Wang C A, Zhang J P, Nie K, et al. Catalysis Science & Technology, 2021, 11(11), 3799. 24 Yang X H, Wang H J, Lu X F, et al. Acta Chimica Sinica, 2009, 67(11), 1166 (in Chinese). 杨晓晖, 王红军, 陆希峰, 等. 化学学报, 2009, 67(11), 1166. 25 Yan X, Liang Z Q, Zhang X B, et al. Acta Materiae Compositae Sinica, 2023, 40(6), 3562 (in Chinese). 晏旭, 梁作芹, 张晓波, 等. 复合材料学报, 2023, 40(6), 3562. 26 Yu B, Wang D A, Ye Q, et al. Chemical Communications, 2009, 28(44), 6789. 27 Chen Z J, Ding S L, Lyu J J, et al. Chinese Journal of Synthetic Chemistry, 2023, 31(8), 573 (in Chinese). 陈正军, 丁尚丽, 吕佳佳, 等. 合成化学, 2023, 31(8), 573. 28 Hu J W, Ding Y, Tao B L, et al. Bioactive Materials, 2022, 18, 228. 29 Deng Y, Shi J C, Chan Y K, et al. Advanced Healthcare Materials, 2022, 11(14), 2200641. 30 Wu B B, Li Y, Su K, et al. Journal of Hazardous Materials, 2019, 377, 227. 31 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426. 32 Han Q Y, Shao M Z, Zhang D D, et al. Chinese Journal of Analytical Chemistry, 2023, 51(1), 53 (in Chinese). 韩庆怡, 邵明政, 张丁丁, 等. 分析化学, 2023, 51(1), 53. 33 Shi J Y, Tian H L, Peng L Y, et al. Journal of Controlled Release, 2022, 352, 766. 34 Li N, Wu G L, Tang L, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46362. 35 Yang L, Huang B, Hu S Q, et al. Nano Research, 2022, 15(5), 4285. 36 Zeng J K, Wang Y T, Sun Z Y, et al. Chemical Engineering Journal, 2020, 394, 125017. 37 Wang X H, Tan L, Liu X M, et al. Biomaterials Science, 2018, 6(9), 2460. 38 Tan L, Li J, Liu X M, et al. Advanced Materials, 2018, 30(31), 1801808. 39 Li M, Li L Q, Su K, et al. Advanced Science, 2019, 6(17), 1900599. 40 Lee H P, Gaharwar A K. Advanced Science, 2020, 7(17), 2000863. 41 Tegou E, Magana M, Katsogridaki A E, et al. Biomaterials, 2016, 89, 38. 42 Wang H T, Yuan H T, Hong S S, et al. Chemical Society Reviews, 2015, 44(9), 2664. 43 Ju W W, Li T W, Yong Y L, et al. Journal of Atomic and Molecular Physics, 2015, 32(2), 329 (in Chinese). 琚伟伟, 李同伟, 雍永亮, 等. 原子与分子物理学报, 2015, 32(2), 329. 44 Mo S D, Ching W Y. Physical Review B, Condensed Matter, 1995, 51(19), 13023. 45 Hao Q, Xie C A, Huang Y M, et al. Chinese Journal of Catalysis, 2020, 41(2), 249. 46 Hu C, Yang Y J, Lin Y Q, et al. Advanced Drug Delivery Reviews, 2021, 178, 113967. 47 Gao Y C, Kang K, Luo B, et al. Regenerative Biomaterials, 2022, 9, rbac24. 48 Ji H W, Sun H J, Qu X G. Advanced Drug Delivery Reviews, 2016, 105, 176. 49 Feng Z Z, Liu X M, Tan L, et al. Small, 2018, 14(21), 1704347. 50 Lin T R, Jiang G Y, Lin D X, et al. ACS Applied Bio Materials, 2022, 5(5), 2347. 51 Fang J, Wan Y, Sun Y, et al. Chemical Engineering Journal, 2022, 435, 134935. 52 Deng Y, Gao X Y, Shi X L, et al. Chemistry of Materials, 2020, 32(5), 2180. 53 Wang S, Duan C Y, Yang W Z, et al. Nanoscale, 2020, 12(22), 11936. 54 Chai M Z, An M W, Zhang X Y, et al. Rare Metals, 2022, 41(2), 540. 55 Zhu M, Liu X M, Tan L, et al. Journal of Hazardous Materials, 2020, 383, 121122. 56 Bose S, Surendhiran D, Chun B S, et al. Colloids and Surfaces B:Biointerfaces, 2022, 219, 112807. 57 Han X, Zhang G N, Chai M Z, et al. Biomedical Materials, 2021, 16(2), 25018. 58 Yuan Z, Tao B L, He Y, et al. Biomaterials, 2019, 217, 119290. 59 Fujishima A, Honda K. Nature, 1972, 238(5358), 37. 60 Han J, Jang E K, Ki M R, et al. Journal of Industrial and Engineering Chemistry, 2022, 112, 258. 61 Hou Y K, Mushtaq A, Tang Z, et al. Journal of Science-Advanced Materials and Devices, 2022, 7(2), 100417. 62 Shi J P, Li J, Wang Y, et al. Chemical Engineering Journal, 2022, 431, 133714. 63 Linsebigler A L, Lu G Q, Yates J T. Chemical Reviews, 1995, 95(3), 735. 64 Li N, Zhang W, Wang D L, et al. Chemistry an Asian Journal, 2022, 17(23), e202200822. 65 Arun J, Nachiappan S, Rangarajan G, et al. Environmental Chemistry Letters, 2023, 21(1), 339. 66 Cao X N, Hu J H, Zhang M L, et al. Journal of Zhejiang Normal University(Natural Science Edition), 2022, 45(3), 315 (in Chinese). 曹潇楠, 胡静慧, 张敏丽, 等. 浙江师范大学学报(自然科学版), 2022, 45(3), 315. 67 Yang M G, Qiu S, Coy E, et al. Advanced Materials, 2022, 34(6), 2106314. 68 Zhang G N, Wu Z Z, Yang Y Q, et al. Chemical Engineering Journal, 2022, 428, 131155. 69 Zhang X Y, Zhang G N, Chai M Z, et al. Bioactive Materials, 2021, 6(1), 12. 70 Lu S X, Li R Y, Chai M Z, et al. Colloids and Surfaces B:Biointerfaces, 2022, 217, 112695. 71 Zhang G N, Zhang X Y, Yang Y Q, et al. Advanced Materials Interfaces, 2020, 7(1), 1901706. 72 Chai M Z, An M W, Zhang X Y. Materials Science & Engineering C-Materials for Biological Applications, 2021, 129, 112416. 73 Zhang G N, Zhang X Y, Yang Y Q, et al. Biomaterials Science, 2020, 8(1), 391.