Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060288-6    https://doi.org/10.11896/cldb.22060288
  金属与金属基复合材料 |
高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征
张明晨1, 郭瑞鹏2, 张勇1,3,4,*
1 北京科技大学新金属材料国家重点实验室,北京 100083
2 太原理工大学材料科学与工程学院,太原 030024
3 北京科技大学磁光电复合与界面科学北京市重点实验室,北京 100083
4 北京科技大学顺德研究生院,广东 佛山 528399
Preparation and Characterization of High-entropy Cemented Carbide WC-AlCo0.4CrFeNi2.7
ZHANG Mingchen1, GUO Ruipeng2, ZHANG Yong1,3,4,*
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China
4 Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, Guangdong, China
下载:  全 文 ( PDF ) ( 8674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以气雾化法制备的AlCo0.4CrFeNi2.7高熵合金粉末和碳化钨(WC)分别作为粘结相和硬质相,采用放电等离子烧结制备高熵硬质合金,研究了粘结相含量和烧结温度对硬质合金的微观结构和力学性能的影响。结果表明,粘结相占比为10%(质量分数)经1 300 ℃烧结的高熵硬质合金具有最佳力学性能,硬度和断裂韧性分别为1 575HV30、9.2 MPa·m1/2。相对于粘结相含量对合金性能的影响,烧结温度的影响效果更显著;两者分别通过影响WC晶粒大小、相对密度以及有害的脆性金属间化合物的生成来影响高熵硬质合金的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明晨
郭瑞鹏
张勇
关键词:  高熵合金  硬质合金  粘结相    
Abstract: AlCo0.4CrFeNi2.7 high entropy alloy (HEA) powder prepared by gas atomization and tungsten carbide (WC) was used as binder phase and hard phase, respectively, and high-entropy cemented carbide was prepared by spark plasma sintering. The effects of binder phase content and sintering temperature on the microstructure and mechanical properties of cemented carbide were studied. The results show that the high-entropy cemented carbide with a binder phase ratio of 10wt% and sintered at 1 300 ℃ has the best mechanical properties, the hardness and fracture toughness are 1 575HV30 and 9.2 MPa·m1/2 , respectively. Compare to the influence of the binder phase content on performance, the effect of sintering temperature on performance is more significant. They affect the mechanical properties of high-entropy cemented carbide by influencing the grain size, relative density and production of harmful brittle intermetallic compounds of tungsten carbide, respectively.
Key words:  high-entropy alloy    cemented carbides    binder phase
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG135.3  
基金资助: 粤佛联合基金重点项目(2019B1515120020);中国创新群体基金(51921001)
通讯作者:  *张勇,北京科技大学教授、博士研究生导师,教育部新世纪人才,曾获得国家自然科学二等奖,教育部自然科学一等奖、二等奖和山西省科学技术二等奖。1998年北京科技大学博士毕业,2004年被评为教授。主要从事高熵合金和非晶合金等方面的研究工作,在Science、Acta Materialia、Progress in Materials Science等期刊发表论文共200余篇。drzhangy@ustb.edu.cn   
作者简介:  张明晨,2019年6月于上海海洋大学获得学士学位,现为北京科技大学新金属材料国家重点实验室研究生,在张勇教授的指导下进行研究。主要研究方向为高熵合金。
引用本文:    
张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
ZHANG Mingchen, GUO Ruipeng, ZHANG Yong. Preparation and Characterization of High-entropy Cemented Carbide WC-AlCo0.4CrFeNi2.7. Materials Reports, 2024, 38(4): 22060288-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060288  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22060288
1 García J, Collado Ciprés V, Blomqvist A, et al. International Journal of Refractory Metals and Hard Materials, 2019, 80, 40.
2 Kwak B W, Song J H, Kim B S, et al. International Journal of Refractory Metals and Hard Materials, 2016, 54, 244.
3 Kim H C, Shon I J, Garay J E, et al. International Journal of Refractory Metals and Hard Materials, 2004, 22(6), 257.
4 Zhang Y, Chen M B, Yang X, et al. Advanced technology in high-entropy alloys, Chemical Industry Press, China, 2018, pp.13 (in Chinese).
张勇, 陈明彪, 杨潇, 等. 先进高熵合金技术, 化学工业版社, 2018, pp.13.
5 Liu Y Y, Chen Z, Shi J C, et al. Vacuum, 2019, 161, 143.
6 Zhang Y. Amorphous and high entropy alloys, Science Press, China, 2010, pp.70 (in Chinese).
张勇. 非晶和高熵合金, 科学出版社, 2010, pp.70.
7 Zhou P L, Xiao D H, Zhou P F, et al. Ceramics International, 2018, 44(14), 17160.
8 Li X, Wei D, Vitos L, et al. Journal of Alloys and Compounds, 2020, 820, 153141.
9 Wang Z X, Zhang Y. Chinese Journal of Engineering, 2021, 43(5), 684 (in Chinese).
王子鑫, 张勇. 工程科学学报, 2021, 43(5), 684.
10 Tong C J, Chen Y L, Yeh J W. Metallurgical and Materials Transactions A, 2005, 36 (5), 1263.
11 Zhang P, Li Y, Chen Z, et al. Vacuum, 2019, 162, 20.
12 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
13 Fang Y, Chen N, Du G, et al. Journal of Alloys and Compounds, 2020, 815, 152486.
14 Chen C S, Yang C C, Chai H Y, et al. International Journal of Refractory Metals and Hard Materials, 2014, 43, 200.
15 Fu Z Z, Raist K. Journal of the American Ceramic Society, 2017, 100, 7.
16 Obra D L, Sayagués M J, Chicardi E, et al. Journal of Alloys and Compounds, 2020, 814, 152218.
17 Velo I L, Gotor F J, Alcalá M D, et al. Journal of Alloys and Compounds, 2018, 746, 1.
18 Mao Y, Mombello D, Baroni C. Scripta Materialia, 2011, 64(12), 1087.
19 Zhang L, Zhang Y. Frontiers in Materials, 2020, 7, 92.
20 Wu Y, Liaw P K, Zhang Y. Metals, 2021, 11, 1748.
21 Verhiest K, Mullens S, Paul J, et al. Ceramics International, 2014, 40(1), 2187.
22 Yang J H, Zhang L X, Sun Z, et al. Applied Surface Science, 2020, 499, 143912.
23 Li B S, Liu A H, Nan H, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 518.
24 Eustathopoulos N. Current Opinion in Solid State and Materials Science, 2005, 9(4), 152.
25 Aksay I A, Hoge C E, Pask J A. The Journal of Physical Chemistry, 1974, 78(12), 1178.
26 Schubert W D, Neumeister H, Kinger G, et al. International Journal of Refractory Metals and Hard Materials, 1998, 16(2), 133.
27 Shao Y, Guo Z H, Wang Y B, et al. International Journal of Refractory Metals & Hard Materials, 2021, 94, 105388.
28 Luo W Y, Liu Y Z, Shen J J. Journal of Alloys and Compounds, 2019, 791, 540.
29 Li Z J, Liu X Q, Guo K K, et al. Materials Science & Engineering A, 2019, 767, 138427.
30 Fu Z Z, Koc R. Materials Science & Engineering A, 2018, 735, 302.
[1] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[2] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[3] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[4] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[5] 周珍珍, 汪佐瑾, 焦世舜, 曹睿. 不同轧制温度对AlCoCrFeNi2.1共晶高熵合金组织与力学性能的影响[J]. 材料导报, 2023, 37(16): 21120021-6.
[6] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[7] 常杜娟, 邓莉萍, 罗军明. 球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响[J]. 材料导报, 2023, 37(10): 21110231-5.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[10] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[11] 陈刚, 邓人钦, 薛伟, 孙瑜蔓, 田茂森, 唐啸天. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 20120018-9.
[12] 白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
[13] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[14] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[15] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed