Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110207-5    https://doi.org/10.11896/cldb.23110207
  金属与金属基复合材料 |
L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金
王沛锦1, 卓家乐1, 艾桃桃1,2,*, 董洪峰1,2
1 陕西理工大学材料科学与工程学院,陕西 汉中 723000
2 陕西理工大学矿渣综合利用环保技术国家地方联合工程实验室,陕西 汉中 723000
L12-type Nano-ordered Precipitation Phase Reinforced (FeNiCoCr)93Al5Ti2 High Entropy Alloy
WANG Peijin1, ZHUO Jiale1, AI Taotao1,2,*, DONG Hongfeng1,2
1 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
2 National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
下载:  全 文 ( PDF ) ( 4877KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 L12型纳米有序相析出强化面心立方结构高熵合金有望获得理想的强度-延性平衡。受此启发,本工作采用热压成形技术制备了一种L12型纳米有序相析出强化的(FeNiCoCr)93Al5Ti2高熵合金。研究发现,该合金由FCC基体相、少量富Cr相及富Fe相组成,其中基体相晶粒内析出呈圆球状L12型结构的Ni3(Al,Ti)颗粒,L12有序析出相与基体相呈共格关系。经估算,有序相强化对高熵合金屈服强度的贡献增量达221.0 MPa,远高于共格弥散强化和模量错配强化。(FeNiCoCr)93Al5Ti2高熵合金具有优异的压缩性能,其工程屈服强度、压缩强度和压缩应变分别为717 MPa、2 304 MPa和44%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王沛锦
卓家乐
艾桃桃
董洪峰
关键词:  高熵合金  纳米析出相  微观组织  力学性能    
Abstract: High entropy alloys(HEAs) with face-centered cubic structure strengthened by L12-type nano-ordered precipitates can obtain ideal strength-ductility equilibrium. In the present study, (FeNiCoCr)93Al5Ti2 HEA reinforced by L12-type nano-ordered precipitation phase was prepared by hot pressing technique. It could be found that the alloy was consisted of FCC matrix phase, a small amount of Cr-rich phase, and Fe-rich phase. Spheroidal L12-type structured Ni3(Al, Ti) particles were precipitated inside the matrix grains and had a coherent relationship with the matrix phase. It was estimated that the incremental contribution of ordered strengthening to the yield strength of the alloy was 221.0 MPa, which was much higher than that of the coherent dispersion strengthening and the modulus mismatch strengthening. The (FeNiCoCr)93Al5Ti2 HEA exhibited excellent compressive properties, as its engineered yield strength, compressive strength, and compressive strain were 717 MPa, 2 304 MPa, and 44%, respectively.
Key words:  high entropy alloy    nano-precipitation phase    microstructure    mechanical property
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TG146  
基金资助: 陕西省自然科学基础研究计划项目(2023-JC-ZD-22)
通讯作者:  *艾桃桃,陕西理工大学材料科学与工程学院教授、博士研究生导师。2004年陕西科技大学无机非金属材料工程专业本科毕业,2007年陕西科技大学材料学专业硕士毕业后到陕西理工大学工作至今,2015年陕西科技大学材料物理与化学专业博士毕业。目前主要从事金属构型强韧化技术、能源催化技术等方面的研究工作。发表论文200余篇,包括《材料导报》、Chemical Engineering Journal、Fuel、Intermetallics等。aitaotao0116@126.com   
作者简介:  王沛锦,2020年7月、2023年6月于陕西理工大学分别获得工学学士学位和硕士学位。研究生期间师从艾桃桃教授。目前主要研究领域为光电器件制造。
引用本文:    
王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
WANG Peijin, ZHUO Jiale, AI Taotao, DONG Hongfeng. L12-type Nano-ordered Precipitation Phase Reinforced (FeNiCoCr)93Al5Ti2 High Entropy Alloy. Materials Reports, 2024, 38(22): 23110207-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110207  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110207
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Yeh J W. JOM, 2013, 65(12), 1759.
3 Biswas K, Yeh J W, Bhattacharjee P P, et al. Scripta Materialia, 2020, 188, 54.
4 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887.
5 Santodonato L J, Zhang Y, Feygenson M, et al. Nature Communications, 2015, 6(1), 5964.
6 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546.
7 Li D, Zhang Y. Intermetallics, 2016, 70, 24.
8 Shi P, Zhong Y, Li Y, et al. Materials Today, 2020, 41, 62.
9 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
10 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758.
11 Jenczyk P, Jarzabek D M, Lu Z, et al. Materials & Design, 2022, 216, 110568.
12 Pickering E J, Carruthers A W, Barron P J, et al. Entropy, 2021, 23(1), 98.
13 Zhang H, Tang H, Li W H, et al. Materials Science and Technology, 2018, 34(5), 572.
14 Muskeri S, Gwalani B, Jha S, et al. Scientific Reports, 2021, 11(1), 22715.
15 Jiang H, Han K M, Qiao D, et al. Materials Chemistry and Physics, 2017, 210, 43.
16 Huang T D, Jiang L, Zhang C, et al. Science China Technological Sciences, 2018, 61, 117.
17 Ma H, Shek C. Journal of Alloys and Compounds, 2020, 827, 154159.
18 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
19 Rogal Ł, Kalita D, Tarasek A, et al. Journal of Alloys and Compounds, 2017, 708, 344.
20 Schuh B, Völker B, Todt J, et al. Acta Materialia, 2018, 142, 201.
21 Jeong H T, Kim W J. Journal of Materials Science & Technology, 2021, 71, 228.
22 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223.
23 Klimova M, Stepanov N, Shaysultanov D, et al. Materials, 2018, 11(1), 53.
24 Yang T, Zhao Y L, Tong Y, et al. Science, 2018, 362(6417), 933.
25 Zhao Y L, Yang T, Tong Y, et al. Acta Materialia, 2017, 138, 72.
26 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
27 Qi Y L, Zhao L, Sun X, et al. Journal of Materials Science & Technology, 2021, 86, 271.
28 Gwalani B, Dasari S, Sharma A, et al. Acta Materialia, 2021, 219, 117234.
29 Chen Y, Hu Y, Hsieh C, et al. Journal of Alloys and Compounds, 2009, 481, 768.
30 Colombini E, Rosa R, Trombi L, et al. Materials Chemistry and Physics, 2018, 210, 78.
31 Fang J Y C, Liu W H, Luan J H, et al. Journal of Phase Equilibria and Diffusion, 2021, 42(5), 781.
32 Wu H, Huang S, Qiu H, et al. Scientific Reports, 2019, 9(1), 1.
33 Li Y L, Zhao Y, Shen L, et al. Journal of Iron and Steel Research International, 2021, 28(4), 496.
34 Jansson B, Melander A. Scripta Metallurgica, 1978, 12, 497.
35 He J Y, Wang H, Wu Y, et al. Intermetallics, 2016, 79, 41.
36 Laplanche G, Gadaud P, Bärsch C, et al. Journal of Alloys and Compounds, 2018, 746, 244.
37 Wang Y, Liu B, Yan K, et al. Acta Materialia, 2018, 154, 79.
38 Zhang F, He J, Wu Y, et al. Materials Science and Engineering A, 2022, 839, 142879.
39 Chu C, Chen W, Chen Z, et al. Acta Metallurgica Sinica(English Letters), 2021, 34(4), 445.
40 Gao S, Kong T, Zhang M, et al. Journal of Materials Research, 2019, 34(5), 819.
41 Soni V K, Sanyal S, Sinha S K. Vacuum, 2020, 174, 109173.
42 Chanda B, Das J. Advanced Engineering Materials, 2017, 20, 1700908.
43 Soni V K, Sanyal S, Sinha S K. Intermetallics, 2021, 132, 107161.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[12] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed