Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070040-6    https://doi.org/10.11896/cldb.22070040
  无机非金属及其复合材料 |
蜘蛛网流道冷板冷却液对向流锂离子电池散热分析
刘显茜*, 曹军磊, 李文辉, 曾朴
昆明理工大学机电工程学院,昆明 650550
Analysis of Lithium-ion Battery Heat Dissipation with Coolant Counter Current in Spider Web Channel Cooling Plate
LIU Xianxi*, CAO Junlei, LI Wenhui, ZENG Pu
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650550, China
下载:  全 文 ( PDF ) ( 11052KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池工作温度过高或温差过大将导致其容量降低和寿命缩短。为了降低其工作温度及温差,设计了一款蜘蛛网流道冷板,采用数值方法对其冷却液对向流锂离子电池散热进行了计算。比较了蜘蛛网流道冷板冷却液对向流与同向流锂离子电池的散热情况,分析了冷却液流量以及冷板内流道夹角、槽深、壁厚对电池散热的影响。结果表明:与冷却液同向流电池相比,冷却液对向流电池最高温度、温差都降低,电池温度分布更加均匀。在0.02~0.06 kg/s区间,随着冷却液流量增大,电池最高温度和温差快速降低,而冷却液压降缓慢增大;当冷却液流量大于0.06 kg/s时,随着冷却液流量增大,电池最高温度和温差缓慢降低,而冷却液压降快速增大。增大流道夹角可使流道在冷板内分布更加均匀,提高冷板散热能力。当冷却液质量流量恒定时,增大流道槽深可使冷却液压降显著减小,但会引起电池最高温度和温差略微升高。随着流道壁厚增大,电池最高温度和温差均呈下降趋势。蜘蛛网流道冷板在流道夹角80°、槽深1 mm、壁厚2 mm、冷却液流量0.06 kg/s对向流冷却条件下,可使锂离子电池3C放电最高温度和温差降至31.02 ℃和4.54 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘显茜
曹军磊
李文辉
曾朴
关键词:  蜘蛛网流道  对向流  散热  锂离子电池    
Abstract: High operating temperature or large temperature difference of lithium-ion battery will reduce its capacity and lifetime. In order to reduce the operating temperature and temperature difference, a spider web channel cooling plate was designed. And the heat dissipation of lithium-ion battery was calculated with the coolant counter current in the channel of the cooling plate by numerical method. The heat dissipation of lithium-ion battery with the coolant in counter current was compared with its heat dissipation with the coolant in co-current. And the effects of flow rate, channel angle, groove depth and wall thickness on the battery heat dissipation were analyzed. The results show that the maximum temperature and temperature difference of the battery cooled with the coolant in counter current are lower than those with the coolant in co-current, and the tempe-rature distribution of the battery is more uniform. In the range of 0.02—0.06 kg/s, with the increase of coolant flow rate, the maximum temperature and temperature difference of the battery decrease rapidly, while the cooling hydraulic drop increases slowly. However, when the coolant flow rate is greater than 0.06 kg/s, with the increase of coolant flow rate, the maximum temperature and temperature difference of the battery decrease slowly, while the cooling hydraulic drop increases rapidly. Increasing the channel angle can make the channel distribution more uniform in the cooling plate and improve the cooling capacity of the cooling plate. Under the condition of the constant of the mass flow rate of coolant, increasing the channel groove depth can greatly reduce the cooling hydraulic drop, but it will cause the maximum temperature and temperature difference of the battery to increase slightly. With the increase of the wall thickness of the flow channel, the maximum temperature and temperature difference of the battery show a downward trend. The maximum temperature and temperature difference of 3C discharge of lithium-ion battery can be reduced to 31.02 ℃ and 4.54 ℃ under the conditions of channel angle 80°, groove depth 1 mm, wall thickness 2 mm and coolant flow rate 0.06 kg/s.
Key words:  spider web channel    counter current    heat dissipation    lithium-ion battery
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TM911  
基金资助: 国家自然科学基金(51566006)
通讯作者:  *刘显茜,昆明理工大学机电工程学院副教授、硕士研究生导师,2010年6月在昆明理工大学获工学博士学位,目前主要从事强化传热、微纳米结构传热等研究工作,主持参与国家自然科学基金、云南省自然科学基金七项。担任国家自然科学基金等的评审专家。截至目前,在Surface Innovations、Heat and Mass Transfer、Chemical Engineering and Processing: Process Intensification、Environmental Science and Pollution、《材料导报》《硅酸盐学报》《农业机械学报》等国际国内核心期刊上发表SCI、EI论文51篇。授权国家发明专利10余项。xxiliu@tom.com   
引用本文:    
刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
LIU Xianxi, CAO Junlei, LI Wenhui, ZENG Pu. Analysis of Lithium-ion Battery Heat Dissipation with Coolant Counter Current in Spider Web Channel Cooling Plate. Materials Reports, 2024, 38(4): 22070040-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070040  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22070040
1 Yang X L, Duan Y K, Feng X N, et al. Fire Technology, 2020, 56(6), 2579.
2 Yu J W, Chen Y L, Fan G H, et al. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12), 2788 (in Chinese).
余剑武, 陈亚玲, 范光辉, 等. 吉林大学学报(工学版), 2022, 52(12), 2788.
3 Jin L, Xie P, Zhao Y Q, et al. Materials Reports, 2021, 35(21), 21113 (in Chinese).
金露, 谢鹏, 赵彦琦, 等. 材料导报, 2021, 35(21), 21113.
4 Yates M, Akrami M, Javadi A A. Journal of Energy Storage, 2021, 33, 107588.
5 Hong S H, Jang D S, Park S, et al. Applied Thermal Engineering, 2020, 173, 115213.
6 Wang X, Xu J, Ding Y J, et al. Energy Storage Science and Technology, 2022, 11(2), 547 (in Chinese).
王翔, 徐晶, 丁亚军, 等. 储能科学与技术, 2022, 11(2), 547.
7 Liu J W, Li H, Li W Y, et al. Applied Thermal Engineering, 2020, 164, 114421.
8 Feng X N, Xu C S, He X M, et al. Journal of Cleaner Production, 2018, 205, 447.
9 Liu X X, Sun A L, Tian C. Energy Storage Science and Technology, 2022, 11(7), 2266 (in Chinese).
刘显茜, 孙安梁, 田川. 储能科学与技术, 2022, 11(7), 2266.
10 Huang F X, Zhao J. Modern Manufacturing Engineering, 2019(11), 62 (in Chinese).
黄富霞, 赵津. 现代制造工程, 2019(11), 62.
11 Sheng L, Su L, Zhang H, et al. International Journal of Heat and Mass Transfer, 2019, 141, 658.
12 Pan C F, Liu B, Chen L, et al. Journal of Southwest Jiaotong University, 2020, 55(1), 68 (in Chinese).
盘朝奉, 刘兵, 陈龙, 等. 西南交通大学学报, 2020, 55(1), 68.
13 Deng T, Zhang G D, Ran Y, et al. Applied Thermal Engineering, 2019, 160, 114088.
14 Tang W, Ding H, Xu X M, et al. Journal of Renewable and Sustainable Energy, 2020, 12(4), 045701.
15 Cai S L, Wei M S, Song P P, et al. Journal of Automotive Safety and Energy, 2021, 12(3), 380 (in Chinese).
蔡森林, 魏名山, 宋盼盼, 等. 汽车安全与节能学报, 2021, 12(3), 380.
16 Ouyang C Z. Thermal analysis and optimization of lithium-ion power batter. Master’s Thesis, Changsha University of Science and Technology, China, 2013 (in Chinese).
欧阳陈志. 锂离子动力电池热分析及优化. 硕士学位论文, 长沙理工大学, 2013.
17 Xu H W, Zhang X, Xiang G, et al. Case Studies in Thermal Enginee-ring, 2021, 26, 101012.
18 Cho G Y, Choi J W, Park J H, et al. International Journal of Automotive Technology, 2014, 15(5), 795.
19 Wu X Y, Zhang H Y, Zhu Z H, et al. Journal of Engineering Thermophysics, 2020, 41(7), 1784 (in Chinese).
吴笑宇, 张恒运, 朱泽华, 等. 工程热物理学报, 2020, 41(7), 1784.
20 Ding Y Z, Ji H C, Wei M X, et al. International Journal of Heat and Mass Transfer, 2022, 183, 122178.
21 Yang Y. Study on lithium-ion battery liquid cooling system of pure electric vehicle. Master’s Thesis, South China University of Technology, China, 2018 (in Chinese).
杨洋. 纯电动汽车锂离子电池组液冷散热系统研究. 硕士学位论文, 华南理工大学, 2018.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[4] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[5] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[6] 田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
[7] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[8] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[9] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[10] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[11] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[12] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[13] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[14] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[15] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed