Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23040299-8    https://doi.org/10.11896/cldb.23040299
  无机非金属及其复合材料 |
高熵材料在锂/钠离子电池中的应用研究进展
王培远1, 邓根成1, 朱登贵1, 李永浩1, 孙淑敏1,*, 方少明1,2,*
1 郑州轻工业大学材料与化学工程学院,郑州 450001
2 郑州轻工业大学河南省表界面科学重点实验室,郑州 450001
Research Progress of High-entropy Materials for Lithium/Sodium Ions Batteries
WANG Peiyuan1, DENG Gencheng1, ZHU Denggui1, LI Yonghao1, SUN Shumin1,*, FANG Shaoming1,2,*
1 College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
2 Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 4033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵材料(HEMs)包括高熵合金(HEAs)、高熵氧化物(HEOs)和其他高熵化合物,是多种元素以等物质的量比或近等物质的量比组成的新型多主元材料,以其独特的晶体结构特征,表现出许多不同于传统材料的组织和性能特点,已经成为国际材料学术界的重要研究热点之一,在新能源相关领域也引起了极大的关注。本文从高熵材料的概念及发展历程出发,主要综述了高熵金属氧化物、高熵普鲁士蓝类似物、高熵磷酸盐等在锂离子电池与钠离子电池正极材料方面,高熵金属氧化物、高熵金属硫化物、高熵合金、高熵MXene等在锂/钠离子电池负极材料方面,以及无序盐晶材料、高熵锂石榴石和高熵氧化物陶瓷粉末在固态电解质方面的研究进展。并对高熵材料在锂/钠离子电池中未来研究发展趋势进行了展望,为新能源材料的研发提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王培远
邓根成
朱登贵
李永浩
孙淑敏
方少明
关键词:  高熵材料  锂离子电池  钠离子电池  电化学储能    
Abstract: High-entropy materials(HEMs) including high-entropy alloys(HEAs), high-entropy oxides(HEOs), and other high-entropy compounds are new multi-principal materials composed of various elements with equal or nearly equal molar ratio. HEMs, with their unique crystal structure characteristics, exhibit many different organizational and performance characteristics from conventional materials, have become one of the important research hotspots in the international materials academia. They have also attracted great attention in the field of new energy and related fields. The concept and development process of high entropy materials were first introduced. This article reviews the research progress of high-entropy metal oxides, high-entropy Prussian blue analogues, and high-entropy phosphates in the cathode materials of lithium-ion batteries and sodium ion batteries. It also reviews the research progress of high-entropy metal oxides, high-entropy metal sulfides, high-entropy alloys, and high-entropy MXene in the anode materials of lithium-ion batteries and sodium ion batteries, as well as the research progress of disordered rock-salt materials, high-entropy lithium garnet, and high-entropy oxide ceramic powders in solid electrolytes. Finally, the future research trends of high entropy materials in lithium-ion batteries and sodium ion batteries were prospected, providing new ideas for the research and development of new energy materials.
Key words:  high-entropy materials    lithium ion battery    sodium ion battery    electrochemical energy storage
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TM911.3  
基金资助: 国家自然科学基金(52272243);河南省重点研发与推广专项(221111240600;222102240030);河南省自然科学基金(222300420581)
通讯作者:  *孙淑敏,郑州轻工业大学材料与化学工程学院副教授、硕士研究生导师。2002年7月于郑州大学获得理学学士学位,2009年7月于中国科学院大连化学物理研究所物理化学专业获得博士学位。目前主要研究领域为电催化、能源转换与存储材料。已发表ACS Nano、J. Mater. Chem. A、J. Power Sources、Dalton. Trans.等SCI论文30余篇。
方少明,郑州轻工业大学材料与化学工程学院教授、博士研究生导师、河南省表界面科学重点实验室主任。1983年北京航空航天大学复合材料专业本科毕业,1988年河北工业大学高分子材料专业硕士毕业后到郑州轻工业大学工作至今,2005年河北工业大学材料物理与化学专业博士毕业。目前主要从事功能材料、材料物理与化学等方面的研究工作。已发表论文300余篇,包括Angew. Chem.、Adv. Funct. Mater.、Adv. Energy Mater.、ACS Nano等。smsun@zzuli.edu.cn;mingfang@zzuli.edu.cn   
作者简介:  王培远,郑州轻工业大学材料与化学工程学院副教授、硕士研究生导师。2002年7月、2005年7月于郑州大学获得理学学士学位和硕士学位,2009年7月于中国科学院大连化学物理研究所物理化学专业获得博士学位。目前主要研究领域为电化学、能源转换与存储材料。已发表ACS Nano、J. Mater. Chem. A、J. Power Sources.Chem. Commun.等SCI论文40余篇。
引用本文:    
王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
WANG Peiyuan, DENG Gencheng, ZHU Denggui, LI Yonghao, SUN Shumin, FANG Shaoming. Research Progress of High-entropy Materials for Lithium/Sodium Ions Batteries. Materials Reports, 2024, 38(22): 23040299-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040299  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23040299
1 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4(8), 515.
2 Oses C, Toher C, Curtarolo S. Nature Reviews Materials, 2020, 5(4), 295.
3 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
4 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1), 8485.
5 Jiang B, Yu Y, Cui J, et al. Science, 2021, 371(6531), 830.
6 Tang L, Li Z, Chen K, et al. Journal of the American Ceramic Society, 2021, 104(5), 1953.
7 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
8 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223.
9 Dornheim M, Doppiu S, Barkhordarian G, et al. Scripta Materialia, 2007, 56(10), 841.
10 Chen Y, Fu H, Huang Y, et al. ACS Materials Letters, 2021, 3(2), 160.
11 Ma Y, Ma Y, Wang Q, et al. Energy & Environmental Science, 2021, 14(5), 2883.
12 Qiu N, Chen H, Yang Z, et al. Journal of Alloys and Compounds, 2019, 777, 767.
13 Zhai S, Rojas J, Ahlborg N, et al. Energy & Environmental Science, 2018, 11(8), 2172.
14 Ma Y, Hu Y, Pramudya Y, et al. Advanced Functional Materials, 2022, 32(34), 2202372.
15 Zhao C, Ding F, Lu Y, et al. Angewandte Chemie-International Edition, 2020, 59(1), 264.
16 Tian K, He H, Li X, et al. Journal of Materials Chemistry A, 2022, 10(28), 14943.
17 Yao L, Zou P, Wang C, et al. Advanced Energy Materials, 2022, 12(41), 2201989.
18 Ma Y, Ma Y, Dreyer S L, et al. Advanced Materials, 2021, 33(34), 2101342.
19 Peng J, Zhang B, Hua W, et al. Angewandte Chemie-International Edition 2023, 62(6), e202215865.
20 Luo Y X. Preparation, performance and ion transport calculation of electrode materials for phosphate batteries. Master's Thesis, Ningbo University, China, 2020(in Chinese).
骆艳香. 磷酸盐电池电极材料的制备、性能及离子输运计算. 硕士学位论文, 宁波大学, 2020.
21 Gu Z Y, Guo J Z, Cao J M, et al. Advanced Materials, 2022, 34(14), 2110108.
22 Wu B, Hou G, Kovalska E, et al. Inorganic Chemistry, 2022, 61(9), 4092.
23 Li H, Xu M, Long H, et al. Advanced Science, 2022, 9(25), 2202082.
24 Sarkar A, Velasco L, Wang D, et al. Nature Communications, 2018, 9, 3400.
25 Wang Q, Sarkar A, Li Z, et al. Electrochemistry Communications, 2019, 100, 121.
26 Wang D, Jiang S, Duan C, et al. Journal of Alloys and Compounds, 2020, 844, 156158.
27 Xiang H Z, Xie H X, Li W C, et al. Chemical Journal of Chinese Universities, 2020, 41(8), 1801(in Chinese).
项厚政, 谢鸿翔, 李文超, 等. 高等学校化学学报, 2020, 41(8), 1801.
28 Xiao B, Wu G, Wang T, et al. Ceramics International, 2021, 47(24), 33972.
29 Zhao J, Zhang Y, Chen X, et al. Advanced Functional Materials, 2022, 32(45), 2206531.
30 Edalati P, Mohammadi A, Li Y, et al. Scripta Materialia, 2022, 209, 114387.
31 Etman A S, Zhou J, Rosen J. Electrochemistry Communications, 2022, 137, 107264.
32 Gao Z, Sun H, Fu L, et al. Advanced Materials, 2018, 30(17), 1705702.
33 Zeng Y, Ouyang B, Liu J, et al. Science(New York, N. Y. ), 2022, 378(6626), 1320.
34 Zhang Q, Arnold W, Hood Z D, et al. ACS Applied Energy Materials, 2021, 4(8), 7674.
35 Fu Z, Ferguson J. Journal of the American Ceramic Society, 2022, 105(10), 6175.
36 Su Y, Rong X, Li H, et al. Advanced Materials, 2022, 35(1), 2209402.
37 Liu W, Jiang J, Yang Z, et al. Chemistry-an Asian Journal, 2022, 17(22), e202200839.
38 Zhao H S, Qi Y L, Ren Y R. Materials Reports, 2023, 37(3), 21030187(in Chinese).
赵宏顺, 戚燕俐, 任玉荣. 材料导报, 2023, 37(3), 21030187.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[3] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[4] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[5] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[6] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[7] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[8] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[9] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[10] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[11] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[12] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[13] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[14] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[15] 尹青, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟. 米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料[J]. 材料导报, 2023, 37(21): 23070158-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed