Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 20090256-9    https://doi.org/10.11896/cldb.20090256
  无机非金属及其复合材料 |
碳布基自支撑锂/钠离子电池负极材料的研究进展
王娜, 费杰*, 郑欣慧, 赵蓓, 杨甜
陕西科技大学材料科学与工程学院,无机材料绿色制备与功能化重点实验室,西安 710021
Self-Supported Carbon Cloth-based Materials as Flexible Lithium/Sodium-ion Battery Anodes: a Review
WANG Na, FEI Jie*, ZHENG Xinhui, ZHAO Bei, YANG Tian
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science & Engineering, Shaanxi University of Science and Technology,Xi'an 710021, China
下载:  全 文 ( PDF ) ( 25533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着可卷曲、可折叠、可穿戴及植入式柔性电子设备的出现,柔性自支撑电极材料的研究也备受瞩目。碳布是一种商用机织物,由于其高导电性、多孔网络、大表面积、良好的机械柔韧性和强度,被认为是构建柔性电极的优秀基材。近年来,各种活性物质(如金属单质、金属化合物及其复合物)直接生长或涂敷在碳布表面,当用作锂/钠离子电池负极时,它们表现出优异的机械稳定性和电化学性能。本文综述了这几类碳布基自支撑锂/钠离子电池负极材料的研究现状,重点介绍了碳布基自支撑锂/钠离子电池负极材料中的三个关键问题,具体包括碳布的预活化、活性物质在碳布上的负载形貌及电化学性能的表征,并展望了碳布基自支撑锂/钠离子电池负极材料所面临的挑战和机遇,这对于碳布用作锂/钠离子电池自支撑电极材料基底的研究具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王娜
费杰
郑欣慧
赵蓓
杨甜
关键词:  碳布  自支撑  负极材料  锂离子电池  钠离子电池    
Abstract: With the surging interest in flexible electronics, such as rollable display, wearable devices, and implantable biomedical products, there is a recent concerted research effort in the development of flexible electrode materials for flexible energy storage devices. Carbon cloth is a commercially available woven fabric that has been regarded as a robust substrate for the construction of flexible electrodes due to its numerous advantages, e.g., high electrical conductivity, porous network, large surface area, good flexibility, and robust mechanical strength. Recently, various active materials, e.g., metal, metal compounds and composite, have been grown directly or coated onto the surface of carbon cloth. When used as the anode of lithium/sodium ion batteries, they exhibit excellent mechanical stability and electrochemical performance. This review summarizes the recent development of carbon cloth-based flexible lithium/sodium-ion battery electrodes. In particular, the prefunctionalization of carbon cloth, surface morphology of flexible electrodes and electrochemical characterization will be discussed. Finally, we will discuss the current challenges and proposed perspectives in the development of carbon cloth-based flexible electrodes. It is expected that this review could help to stimulate the further development of advanced flexible lithium/sodium-ion batteries.
Key words:  carbon cloth    self-supporting    anode material    lithium ion battery    sodium ion battery
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51872176;51672166);国家重点科研项目(2017YFB0308300);陕西省陶瓷材料绿色制造重点实验室(2019220214;SYS017CG039)
通讯作者:  * 费杰,陕西科技大学材料科学与工程学院教授、博士研究生导师。2002年7月本科毕业于河南科技大学,2009年7月在西北工业大学取得博士学位。主要从事碳基复合材料、摩擦材料和陶瓷材料等方向的研究工作,以第一或通信作者身份在Chemical Communications、Applied Surface Science、Tribology International等国内外知名学术期刊发表论文30余篇,获批国家发明专利20余项。1259844855@qq.com   
作者简介:  王娜,2009年6月毕业于廊坊师范学院,获得理学学士学位。现为陕西科技大学材料科学与工程学院博士研究生,在费杰教授的指导下进行研究。目前主要研究领域为碳布基自支撑锂/钠离子电池负极材料。
引用本文:    
王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
WANG Na, FEI Jie, ZHENG Xinhui, ZHAO Bei, YANG Tian. Self-Supported Carbon Cloth-based Materials as Flexible Lithium/Sodium-ion Battery Anodes: a Review. Materials Reports, 2023, 37(4): 20090256-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090256  或          http://www.mater-rep.com/CN/Y2023/V37/I4/20090256
1 Wang H G, Li W, Liu D P, et al. Advanced Materials, 2017, 29, 1703012.
2 Liu B, Zhang J, Wang X, et al. Nano Letters, 2012, 12, 3005.
3 Zhou C, Fan S, Hu M, et al. Journal of Materials Chemistry A, 2017, 5, 15517.
4 Xu J, Su D, Wang G. IOP Conference Series: Materials Science and Engineering, 2017, 222, 012013.
5 Li K, Chen S, Chen S, et al. Nano Research, 2018, 12, 549.
6 He Z, Chen Z, Meng W, et al. Journal of Energy Chemistry, 2016, 25, 720.
7 Jeon H, Jeong J M, Hong S B, et al. Electrochimica Acta, 2018, 280, 9.
8 Balogun M S, Qiu W, Lyu F, et al. Nano Energy, 2016, 26, 446.
9 Lu H Y, Zhang X H, Wan F, et al. ACS Applied Materials and Interfaces, 2017, 9, 12518.
10 Song W, Hou X, Wang X, et al. Energy Technology, 2014, 2, 370.
11 Liu S, Luo Z, Guo J, et al. Electrochemistry Communications, 2017, 81, 10.
12 Huang X, Diao G, Li S, et al. RSC Advances, 2018, 8, 17056.
13 Han Q, Geng D, Han Z, et al. Journal of Electroanalytical Chemistry, 2018, 822, 17.
14 Hou X, Liu B, Wang X, et al. Nanoscale, 2013, 5, 7831.
15 Yu H, Zhu C, Zhang K, et al. Journal of Materials Chemistry A, 2014, 2, 4551.
16 Cheng C, Zhou G, Du J, et al. New Journal of Chemistry, 2014, 38, 2250.
17 Chao J, Zhang X, Xing S, et al. Materials Science and Engineering: B, 2016, 210, 24.
18 Qiu W, Balogun M S, Luo Y, et al. Electrochimica Acta, 2016, 193, 32.
19 Li W, Gan L, Guo K, et al. Nanoscale, 2016, 8, 8666.
20 Cheng S, Shi T, Tao X, et al. Electrochimica Acta, 2016, 212, 492.
21 Huang L, Wang X, Yin F, et al. Journal of Nanoparticle Research, 2017, 19, 1.
22 Wu K, Zhan J, Xu G, et al. Nanoscale, 2018, 10, 16040.
23 Wang Y, Wu C, Wu Z, et al. Chemical Communications, 2018, 54, 9341.
24 Tang W, Wang X, Xie D, et al. Journal of Materials Chemistry A, 2018, 6, 18318.
25 Long B, Zhang J, Luo L, et al. Journal of Materials Chemistry A, 2019, 7, 2626.
26 Zou R, Zhang Z, Yuen M F, et al. NPG Asia Materials, 2015, 7, 195.
27 Mo Y, Ru Q, Chen J, et al. Journal of Materials Chemistry A, 2015, 3, 19765.
28 Chen Q, Lu F, Xia Y, et al. Journal of Materials Chemistry A, 2017, 5, 4075.
29 Xia J, Tian R, Guo Y, et al. Materials and Design, 2018, 156, 272.
30 Ni L, Jia L, Chen G, et al. Journal of Physics and Chemistry of Solids, 2018, 122, 261.
31 Gao L, Qu F, Wu X. Journal of Materials Chemistry A, 2014, 2(20), 7367.
32 Xiong Q Q, Tu J P, Xia X H, et al. Nanoscale, 2013, 5, 7906.
33 Ren W, Wang C, Lu L, et al. Journal of Materials Chemistry A, 2013, 1(43), 13433.
34 Hou X, Wang X, Liu B, et al. ChemElectroChem, 2014, 1, 108.
35 Ren W, Kong D, Cheng C. ChemElectroChem, 2014, 1, 2064.
36 Zhang G, Hou S, Zhang H, et al. Advanced Materials, 2015, 27, 2400.
37 Balogun M S, Li C, Zeng Y, et al. Journal of Power Sources, 2014, 272, 946.
38 Liu Y, Fang X, Ge M, et al. Nano Energy, 2015, 16, 399.
39 Zhang H, Ren W, Cheng C. Nanotechnology, 2015, 26, 274002.
40 Wei X, Li W, Shi J A, et al. ACS Applied Mater Interfaces, 2015, 7, 27804.
41 Wang W, Gu L, Qian H, et al. Journal of Power Sources, 2016, 307, 410.
42 Wang X, Zhang M, Liu E, et al. Applied Surface Science, 2016, 390, 350.
43 Wang X, Sun L, Susantyoko R A, et al. Carbon, 2016, 98, 504.
44 Xu W, Zhao K, Zhang L, et al. Journal of Alloys and Compounds, 2016, 654, 357.
45 Ren W, Zhang H, Guan C,et al. Green Energy and Environment, 2018, 3, 42.
46 Ren W, Zhang H, Guan C, et al. Advanced Functional Materials, 2017, 27, 1702116.
47 Deng Z, Jiang H, Hu Y, et al. Advanced Materials, 2017, 29, 1603020.
48 Gao L, Qu F, Wu X. Journal of Materials Chemistry A, 2014, 2, 7367.
49 Tan H, Cho H W, Wu J J. Journal of Power Sources, 2018, 388, 11.
50 Li Z, Li L, Zhong W, et al. Journal of Alloys and Compounds, 2018, 766, 253.
51 Ni L, Tang W, Liu X, et al. Dalton Trans, 2018, 47, 3775.
52 Fei J, Cui Y, Li J, et al. Chemical Communications, 2017, 53, 13165.
53 Wang N, Fei J, Li J, et al. Journal of Electroanalytical Chemistry, 2021, 892, 115275.
54 Cheng N, Liu Q, Tian J, et al. Chemical Communications, 2015, 51, 1616.
55 Fu Y, Zhou H, Hu Z, et al. Composites Communications, 2020, 22, 100446.
56 Dai S, Wang L, Shen Y, et al. Applied Materials Today, 2019, 18, 100455.
57 Gao Z, Wang Z, Lai Y, et al. 2D Materials, 2020, 7, 025022.
58 Wang L, Wu X, Wang F, et al. Journal of Colloid and Interface Science, 2021, 583, 579.
59 Narsimulu D, Nagaraju G, Sekhar S C, et al. Applied Surface Science, 2021, 538, 148033.
60 Dong L, Hao J, Liu H, et al. ChemistrySelect, 2020, 5, 2372.
61 Guo Y, Li S, Fang Q, et al. RSC Advances, 2020, 10, 9335.
[1] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[2] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[3] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[4] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[5] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[6] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[7] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[8] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[9] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[10] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[11] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[12] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[13] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[14] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[15] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed