Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7056-7062    https://doi.org/10.11896/cldb.19090064
  无机非金属及其复合材料 |
锂离子电池用富锂锰基正极材料掺杂改性研究进展
翟鑫华1,2, 张盼盼1,2, 周建峰2,3, 何亚鹏1,2, 黄惠1,2,3, 郭忠诚1,2,3
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省冶金电极材料工程技术研究中心,昆明 650106
3 昆明理工恒达科技股份有限公司,昆明 650106
Research Progress on Doping Modification of Li-rich Manganese-based Cathode Materials for Lithium-ion Batteries
ZHAI Xinhua1,2, ZHANG Panpan1,2, ZHOU Jianfeng2,3, HE Yapeng1,2, HUANG Hui1,2,3, GUO Zhongcheng1,2,3
1 College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Research Center of Metallurgical Electrode Materials Engineering Technology,Kunming 650106, China
3 Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 3381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池因具有能量密度高、循环寿命长、自放电率小和环境污染小等优点,目前成为能源设备领域使用占比最多的一类电化学储能电池。正极材料作为锂离子电池中Li+的主要提供者,其研发始终受到科技工作者的广泛关注。其中,富锂锰基正极材料具有高比容量、高电压和优异的高温性能等优点,被视为极具潜力的正极材料。然而,富锂锰基正极材料在工作中存在稳定性不好的问题,例如富锂锰材料在充放电循环过程中容易发生锂镍混排,导致层状结构坍塌,影响材料性能,进而使得此类正极材料的应用前景受限。因此,近些年研究者对富锂锰基正极材料进行大量改性研究,并获得优异的成果。在所有的改性方法中,离子掺杂改性由于其特殊的机理,成为改性方法中较佳的选择。目前,富锂锰基正极材料离子掺杂的主要形式包括阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂。阳离子掺杂是现阶段最为常见的掺杂形式,其主要是在过渡金属位置进行掺杂,少部分在Li位进行掺杂。阳离子掺杂能够抑制过渡金属离子向锂层迁移,减缓尖晶石相生成,提高富锂锰基正极材料结构的稳定性。阴离子掺杂主要是弥补和替换充电过程中形成的氧空位,该方法能够抑制氧空位形成,提高正极材料的安全性和库伦效率。聚阴离子掺杂与阴离子掺杂相似,同样是在正极材料的氧位进行掺杂,由于聚阴离子与过渡金属的结合能更强,过渡金属迁移被抑制,层状结构更加稳固,材料性能显著提升。共掺杂是将阳离子和阴离子同时掺杂到正极材料中,该方法具备阴、阳离子单独掺杂时的效果,可以稳定层状结构,并能显著提高正极材料的循环稳定性,提高电池的循环能力。本文总结了富锂锰基正极材料的结构组成、反应机理以及自身存在的缺陷,重点讨论了阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂等掺杂方法对富锂锰基正极材料性能的影响,分析了现阶段掺杂改性仍存在的问题并展望其未来研究方向,以期为制备稳定和高性能的富锂锰基正极材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟鑫华
张盼盼
周建峰
何亚鹏
黄惠
郭忠诚
关键词:  锂离子电池  富锂锰基正极材料  离子掺杂  掺杂改性  电化学性能    
Abstract: Lithium-ion batteries have the advantages of high energy density, long cycle life, low self-discharge rate, and low environmental pollution, which have become the typical electrochemical energy storage batteries with the largest proportion of energy equipment. As the main supp-lier of Li+ in lithium-ion batteries, the research and development of cathode materials has always attracted widespread attention of scientific and technological workers. Lithium-rich manganese-based cathode materials possess the merits of high specific capacity, high voltage, and excellent high-temperature performance, and are considered to be potential cathode materials. However, lithium-rich manganese-based cathode materials commonly suffer from the stability problems. For example, the lithium-nickel mixing during the charge and discharge cycle of the lithium-manganese-rich materials leads to the collapse of the layered structure and affects the mate-rial performance, further obstructing the application of such cathode materials. Therefore, a large number of modification approaches have been performed on lithium-rich manganese-based cathode materials in recent years, and excellent results have been achieved. In all modification met-hods, the ion doping modification has been regarded an excellent choice in the modification methods. Commonly, the ion doping approaches mainly contain cation doping, anion doping, polyanion doping and co-doping. Cation doping is the most common doping option at this stage. It is mainly doped at the transition metal position, and a small part is doped with Li site. Cation doping can inhibit the migration of excessive metal ions to the lithium layer, slow the spinel phase formation, and increase the structural stability of lithium manganese-based cathode materials. Anion doping mainly compensates and replaces the oxygen vacancies formed during the charging process. This method can suppress the formation of oxygen vacancies, improve the safety and the coulomb efficiency of the cathode electrode material. Polyanion doping is similar to anion doping, and is also doped at the oxygen position of the cathode electrode material. As the strong binding energy of the polyanion and the transition metals, the migration of the transition metals is suppressed, resulting into the stable layered structure and significantly improved electrochemical performances. Co-doping is the simultaneous doping of cations and anions into the cathode electrode material. This method combines the synergistic effect of the cations and cations simultaneously, which can stabilize the layered structure, significantly improve its stability, and improve the cycling ability of the battery. This article summarizes the structural composition, reaction mechanism, and intrinsic defects of lithium-rich manganese-based cathode mate-rials. We emphatically focus on the doping methods of cation doping, anion doping, polyanion doping, and co-doping and analyze their effects on the material properties. Besides, the existing problems of the doping modification at this stage are also elaborated, and future research directions are prospected in order to provide a reference for the preparation of stable and high-performance lithium-manganese-based cathode materials.
Key words:  lithium-ion batteries    lithium-rich manganese-based cathode materials    ion doping    doping modification    electrochemical properties
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TM912  
基金资助: 国家自然科学基金(22002054;52064028;51504111;51564029);中国博士后科学基金 (2018M633418);昆明理工大学分析测试基金 (2018T20172015)
作者简介:  翟鑫华,2018年6月毕业于辽宁科技学院,获工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,师从黄惠教授。目前主要研究方向为锂离子电池用富锂锰基正极材料。
黄慧,昆明理工大学教授,博士研究生导师。获得四川大学高分子科学学士学位,云南大学无机材料硕士学位,昆明理工大学冶金物理化学博士学位,2014年—2015年在佛罗里达大学任访问学者。主要从事导电节能聚合物电极材料、储能材料、特种功能粉末材料、冶金电化学和湿法冶金新材料等领域的研究。目前已发表48篇研究论文,其中包括36篇SCI和EI论文。
引用本文:    
翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
ZHAI Xinhua, ZHANG Panpan, ZHOU Jianfeng, HE Yapeng, HUANG Hui, GUO Zhongcheng. Research Progress on Doping Modification of Li-rich Manganese-based Cathode Materials for Lithium-ion Batteries. Materials Reports, 2021, 35(7): 7056-7062.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090064  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7056
1 Goodenough J B, Kim Y, et al. Chemistry of Materials, 2009, 22(3), 587.
2 Qiu B, Zhang M, Wu L, et al. Nature Communications, 2016, 7, 12108.
3 Gao X P, Yang H X. Energy & Environmental Science, 2010, 3(2), 174.
4 Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167.
5 Su L, Jing Y, Zhou Z,et al. Nanoscale, 2011, 3(10), 3967.
6 Hu L, Freeland J W, Cabana J,et al. ACS Applied Energy Materials, 2019, 2(3), 2149.
7 Yang H, Yang J, Savory C N, et al. The Journal of Physical Chemistry Letters, 2019, 10(18), 5552.
8 Wu X, Li Y, Li C, et al. Journal of Power Sources, 2015, 300, 453.
9 Liu S, Fang H, Dai E, et al. Electrochimica Acta, 2014, 116, 97.
10 Thackeray M M, Kang S H, Johnson C S, et al. Journal of Materials Chemistry, 2007, 17(30), 3112.
11 Kang S H, Kempgens P, Greenbaum S, et al. Journal of Materials Chemistry, 2007, 17(20), 2069.
12 Jarvis K A, Deng Z, Allard L F, et al. Chemistry of Materials, 2011, 23(16), 3614.
13 Yu H, Ishikawa R, So Y G, et al. Angewandte Chemie International Edition, 2013, 52(23), 5969.
14 Zheng J, Myeong S, Cho W, et al. Advanced Energy Materials, 2017, 7(6), 1601284.
15 Luo D, Li G, Fu C, et al. Advanced Energy Materials, 2014, 4(11), 1400062.
16 Gu M, Belharouak I, Zheng J, et al. ACS Nano, 2012, 7(1), 760.
17 Sathiya M, Abakumov A M, Foix D, et al. Nature Materials, 2015, 14,230.
18 Zhou L Z,Xu J J,Tang W P,et al.Journal of Electrochemistry, 2015, 21(2), 138.
周罗增, 徐群杰, 汤卫平.电化学, 2015, 21(2), 138.
19 Dogan F, Long B R, Croy J R, et al. Journal of the American Chemical Society, 2015, 137(6), 2328.
20 Pechen L S, Makhonina E V, Rumyantsev A M, et al. Russian Chemical Bulletin, 2019, 68(2), 293.
21 Mohanty D, Kalnaus S, Meisner R A, et al. Journal of Power Sources, 2013, 229,239.
22 Liu Y, Ning D, Zheng L, et al. Journal of Power Sources, 2018, 375,1.
23 Xie D, Zhou W, Lin K, et al. Materials Letters, 2019, 253, 82.
24 Zhang X, Xiong Y, Dong M, et al. Journal of the Electrochemical Society, 2019, 166(13), A2960.
25 Cho S W, Kim G O, Ryu K S, et al. Solid State Ionics, 2012, 206, 84.
26 Choi A, Lim J, Kim H J, et al. Advanced Energy Materials, 2018, 8(11), 1702514.
27 Xu X X, Yang J, Wang Y Q, et al. Journal of Power Sources, 2007, 174(2), 1113.
28 Qin M, Cao K, Wang X, et al. Ionics, 2013, 19(12),1891.
29 Zhou Z X, Ma Y L, Wang L, et al. Electrochimica Acta, 2016, 216, 44.
30 Bao L, Yang Z, Chen L, et al. ChemSusChem, 2019, 12(10), 2294.
31 Li W. Preparation and doping modification of LiNi1/3Co1/3Mn1/3O2 cat-hode materials for Li-ion batteries. Master's Thesis, Inner Mongolia University of Technology, China, 2015(in Chinese).
李伟. 锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的制备及掺杂改性研究. 硕士学位论文, 内蒙古工业大学,2015.
32 Konishi H, Gunji A, Feng X, et al. Journal of Solid State Chemistry, 2017, 249,80.
33 Hu X, Guo H, Peng W, et al. Journal of Electroanalytical Chemistry, 2018, 822, 57.
34 Zhao L, Wu Q, Wu J, et al. Journal of Solid State Electrochemistry, 2018, 22(7), 2141.
35 Zhao J, Wang Z, Guo H, et al. Ceramics International, 2015, 41(9), 11396.
36 Choi A, Lim J, Kim H, et al. ACS Applied Energy Materials, 2019, 2(5), 3427.
37 Yu R, Wang G, Liu M, et al. Journal of Power Sources, 2016, 335, 65.
38 Pan L, Xia Y, Qiu B, et al. Journal of Power Sources, 2016, 327, 273.
39 Sun Z, Xu L, Dong C, et al. Journal of Materials Chemistry A, 2019, 7(7), 3375.
40 Li N, An R, Su Y, et al. Journal of Materials Chemistry A, 2013, 1(34), 9760.
41 Yi T F, Xie Y, Ye M F, et al. Ionics, 2011, 17(5), 383.
42 Song J H, Kapylou A, Choi H S, et al. Journal of Power Sources, 2016, 313, 65.
43 Li L, Song B H, Chang Y L, et al. Journal of Power Sources, 2015, 283, 162.
44 Liu T, Zhao S X, Gou L L, et al. Rare Metals, 2019, 38(3), 189.
45 Kapylou A, Song J H, Missiul A, et al. ChemPhysChem, 2018, 19(1), 116.
46 Sun Y K, Oh S W, Yoon C S, et al. Journal of Power Sources, 2006, 161(1), 19.
47 An J, Shi L, Chen G, et al. Journal of Materials Chemistry A, 2017, 5(37), 19738.
48 Gong Z, Yang Y, et al. Energy & Environmental Science, 2011, 4(9), 3223.
49 Zhang H Z, Qiao Q Q, Li G R, et al. Journal of Materials Chemistry A, 2014, 2(20), 7454.
50 Liu J, Wang S, Ding Z, et al. ACS Applied Materials & Interfaces, 2016, 8(28), 18008.
51 Ma L, Mao L, Zhao X, et al. ChemElectroChem, 2017, 4(12), 3068.
52 Li B,Yan H,Ma J,Yu P,Xia D,Huang W, et al. Advanced Functional Materials,2014,24( 32), 5112.
53 Choi J, Manthiram A, et al. Journal of The Electrochemical Society, 2005, 152(9), A1714.
54 Cong L, Zhao Q, Wang Z, et al. Electrochimica Acta, 2016, 201, 8.
55 Zhang H Z, Li F, Pan G L, et al. Journal of The Electrochemical Society, 2015, 162(9), A1899.
56 Cao H, Xia B, Xu N, et al. Journal of Alloys and Compounds, 2004, 376(1-2), 282.
57 Ming L, Zhang B, Cao Y, et al. Frontiers in Chemistry, 2018, 6, 76.
58 Xie D, Li G, Li Q, et al. Electrochimica Acta, 2016, 196, 505.
59 Lim S N, Seo J Y, Jung D S, et al. Journal of Electroanalytical Chemistry, 2015, 740, 88.
60 Liao L, Wang X, Luo X, et al. Journal of Power Sources, 2006, 160(1), 657.
[1] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[2] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[3] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[4] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[5] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[6] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[7] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[8] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[9] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[10] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[11] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[12] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[13] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[14] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[15] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed