Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7026-7035    https://doi.org/10.11896/cldb.19020040
  无机非金属及其复合材料 |
车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展
赵立敏1, 王惠亚1, 解启飞1, 邓秉浩1, 张芳2, 何丹农1,2
1 上海交通大学材料科学与工程学院,上海 200240;
2 纳米技术及应用国家工程研究中心,上海 200241
Preparation and Development of Nano-sized Si/C Anode Material for Li-ion Battery Used in Vehicle
ZHAO Limin1, WANG Huiya1, XIE Qifei1, DENG Binghao1, ZHANG Fang2, HE Dannong1,2
1 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 National Engineering Research Center for Nanotechnology, Shanghai 200241, China
下载:  全 文 ( PDF ) ( 3534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO4)和三元材料(Li(NixCoyMn1-x-y)O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg-1。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4 200 mAh·g-1的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。
   然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。
   解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性能纳米硅/碳负极材料,如3D多孔纳米硅/碳材料、中空核-壳纳米硅/碳材料等。
   本文先阐述了硅锂合金的电化学反应机理与容量衰减的原因,以及纳米硅的制备方法,然后从表面包覆、结构制备、掺杂、MOFs改性等方面对硅/碳复合材料的常见修饰方法进行了综述,并进一步分析了中空核-壳结构、多孔结构等在提高电化学性能上的优势。最后,本文总结了纳米硅/碳作为负极材料的优点与当前遇到的问题,归纳并分析了不同包覆材料、不同包覆方法和不同离子掺杂带来的性能差异及原因,提出未来纳米硅/碳产业化道路上的关键突破点,并展望了其在纯电动汽车领域的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立敏
王惠亚
解启飞
邓秉浩
张芳
何丹农
关键词:  硅/碳负极  锂离子电池  高能量密度  包覆掺杂  硅基材料    
Abstract: With the increasing environmental and energy problems, traditional cars are gradually moving toward new energy. Lithium-ion batteries are considered to be one of the most promising new energy vehicle powers due to their high discharge voltage platform, low self-discharge rate and friendly environment. However, with the increasing demand for the driving distance of new energy vehicles, improving the energy density of batteries has become a hot topic. Therefore, improving the energy density of batteries for pure electric vehicles and developing high energy density positive and negative materials are one of the research directions of batteries. At present, the cathode materials of commercial pure electric vehicles are mainly LiFePO4 and Li(NixCoyMn1-x-y)O. The anode material is graphite. This type of battery has an energy density of only 200—300 Wh·kg-1. Silicon has a high theoretical specific capacity of 4 200 mAh·g-1, which is one of the most promising anode materials for high energy density lithium ion batteries.
However, the dramatic volume change of silicon in the charge and discharge reaction hinders the commercial application of silicon materials. The alloying reaction of silicon can store lithium ions. The alloying reaction provides a high specific capacity accompanied by a 300% volume expansion. A drastic volume change causes the active material to fall off, and the SEI film continues to form, which causes a rapid decay of the battery capacity in actual use. In addition, pure silicon is a semiconductor with low intrinsic carrier concentration, so it can not meet the requirements for conductivity.
The most common methods for the above problems are listed below: (ⅰ) Synthesis of nano-sized silicon. The diffusion of lithium ions in solids is difficult. Although with the help of the electric field, the diffusion rate of lithium ions in silicon is still very slow. Silicon nanocrystallization can shorten the diffusion distance of lithium ions from the silicon surface to the center, which effectively shortens the battery charging time. (ⅱ) Pre-paration of silicon/carbon composite. Carbon materials have good cycle stability and electrical conductivity. If silicon is combined with carbon, carbon can buffer the volumetric change of silicon in the alloying reaction and increase the electronic conductivity of the negative electrode. The outer carbon shell can prevent direct contact between silicon and electrolyte to form a stable SEI film. (ⅲ) Design the microstructure of the material. Special structures such as hollow core-shell structure and 3D porous structure can alleviate the volume expansion effect of silicon, which will effectively inhibit the falling off of the electrode material. The above three methods are often used in combination to prepare high-performance nano-sized silicon/carbon anode materials, such as 3D porous nano-silicon/carbon materials, hollow core-shell nano-silicon/carbon materials.
This paper first explains the electrochemical reaction mechanism and the reasons for capacity decay of silicon-lithium alloys. Next, the preparation method of nano-sized silicon is given. Then, the common modification methods of silicon/carbon composites are reviewed from surface coa-ting, structure preparation, doping and MOF modification. Furthermore, the advantages of hollow core-shell structure and porous structure in improving electrochemical performance are analyzed. Finally, this paper summarizes the advantages and disadvantages of nano-silicon/carbon as a negative electrode material and analyzes the performance differences and causes of different covering materials, different coating methods and different ion doping. The key point in nano-silicon/carbon industrialization is proposed and the fascinating application prospect of nano-silicon/carbon is envisioned in pure electric vehicles.
Key words:  silicon carbon anode electrode    Li-ion battery    high energy density    coating and doping    silicon based material
                    发布日期:  2020-04-10
ZTFLH:  TM912. 6  
基金资助: 国家重点基础研究发展计划(973计划)项目(2015CB931901);上海市高新技术领域项目(18511110000);上海市基础重大项目(18JC1410604)
通讯作者:  hdn_nercn@163.com   
作者简介:  赵立敏,2017年毕业于哈尔滨工业大学,获得工学学士学位。现为上海交通大学材料学院硕士研究生。指导老师为何丹农教授和张芳研究员,主要研究方向为锂离子电池硅碳负极材料。
张芳,毕业于上海交通大学,获工学博士学位。长期从事锂离子电池正负极材料、隔膜和电解液的产业化研究。
何丹农,上海交通大学材料学院教授、博士研究生导师。主要从事纳米器件的研究和产业化应用工作。
引用本文:    
赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
ZHAO Limin, WANG Huiya, XIE Qifei, DENG Binghao, ZHANG Fang, HE Dannong. Preparation and Development of Nano-sized Si/C Anode Material for Li-ion Battery Used in Vehicle. Materials Reports, 2020, 34(7): 7026-7035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020040  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7026
1 Etacheri V, Marom R, Elazari, R, et al. Energy & Environmental Science, 2011, 4(9), 3243.
2 Obrovac M N, Chevrier V L. Chemical Reviews, 2014, 114(23), 11444.
3 Kennedy T, Bezuidenhout M, Palaniappan K, et al. ACS Nano, 2015, 9(7), 7456.
4 Wu H, Cui Y. Nano Today, 2012, 7(5), 414.
5 Magasinski A, Dixon P, Hertzberg B, et al. Nature Materials, 2010, 9(4), 353.
6 Zuo P, Yin G, Hao X, et al. Materials Chemistry & Physics, 2007, 104(2), 444.
7 Johnson D C, Mosby J M, Riha S C, et al. Journal of Materials Chemistry, 2010, 20(10), 1993.
8 Hu Y S, Demir-Cakan R, Titirici M M, et al. Angewandte Chemie International Edition, 2010, 47(9), 1645.
9 Kim H, Seo M, Park M H, et al. Angewandte Chemie, 2010, 49(12), 2146.
10 Liu H K, Guo Z P, Wang J Z, et al. Journal of Materials Chemistry, 2010, 20(45), 10055.
11 Obrovac M N, Christensen L. Electrochemical and Solid State Letters, 2004, 7(5), A93.
12 Li J, Dahn J R. Journal of the Electrochemical Society, 2007, 154(3), A156.
13 Shi H, Liu X, Wu R, et al. Applied Sciences-Basel, 2019, 9(5), 956.
14 Wang G X, Yao J, Liu H K. Electrochemical and Solid State Letters, 2004, 7(8), A250.
15 Qin S, Hanai K, Imanishi N, et al. Journal of Power Sources, 2009, 189(1), 761.
16 Dutta J, Bacsa W, Hollenstein C. Journal of Applied Physics, 1995, 77(8), 3729.
17 Dutta J, Hofmann H, Houriet R, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1997, 127(127), 263.
18 Yasar-Inceoglu O, Lopez T, Farshihagro E, et al. Nanotechnology, 2012, 23(25), 255604.
19 Zbib M B, Dahl M M, Sahaym U, et al. Journal of Materials Science, 2012, 47(6), 2583.
20 Rybaltovskii A O, Bagratashvili V N, Ishchenko A A, et al. Nanotech-nologies in Russia, 2012, 7(7-8), 96.
21 Tamir S, Berger S. Thin Solid Films, 1996, 276(1-2), 108.
22 Asadullah M, Ito S, Kunimori K, et al. Journal of Catalysis, 2002, 208(2), 255.
23 Yermekova Z, Mansurov Z, Mukasyan A S. International Journal of Self-Propagating High-Temperature Synthesis, 2010, 19(2), 94.
24 Araujo-Andrade C, Espinoza-Beltrán F J, Jiménez-Sandoval S, et al. Scripta Materialia, 2003, 49(8), 773.
25 Bai Z, Tu W, Zhu J, et al. Polymers, 2019, 11(4), 576.
26 Ahn J, Kim H S, Pyo J, et al. Chemistry of Materials, 2016, 28(5), 1526.
27 An W, Xiang B, Fu J, et al. Applied Surface Science, 2019, 479(896), 902.
28 Chen R C, Hsiao L Y, Wu C Y, et al. Journal of Alloys and Compounds, 2019, 791(19), 29.
29 Liu W R, Wang J H, Wu H C, et al. Journal of the Electrochemical So-ciety, 2005, 152(9), A1719.
30 Dimov N, Fukuda K, Umeno T, et al. Journal of Power Sources, 2003, 114(1), 88.
31 Ding C, Zhou W, Wang B, et al. Nanotechnology, 2017, 28(34), 345404.
32 Gao P, Fu J, Yang J, et al. Physical Chemistry Chemical Physics, 2009, 11(47), 11101.
33 Ma C, Ma C, Wang J, et al. Carbon, 2014, 72(3), 38.
34 Du C, Gao C, Yin G, et al. Energy & Environmental Science, 2011, 4(3), 1037.
35 Zhou J, Zhang X, Mu W, et al. Microporous & Mesoporous Materials, 2015, 204(115), 122.
36 Sun X, Zheng C, Zhang F, et al. The Journal of Physical Chemistry C, 2009, 113(36), 16002.
37 Wang Z B, Li C Z, Gu D M, et al. Journal of Power Sources, 2013, 238(28), 283.
38 Zhou W, Wang D, Zhao L, et al. Nanotechnology, 2017, 28(24), 245401.
39 Xu G L, Li Y, Ma T, et al. Nano Energy, 2015, 18(253), 246.
40 Liu Y, Yu Y, Yang Q, et al. Sensors & Actuators B Chemical, 2008, 131(2), 432.
41 Tu W, Bai Z, Deng Z, et al. Nanomaterials, 2019, 9(3), 432.
42 Yoshio M, Wang H Y, Fukuda K, et al. Journal of the Electrochemical Society, 2002, 149(12), A1598.
43 Hu L, Wu H, Gao Y, et al. Advanced Energy Materials, 2011, 1(4), 523.
44 Xiao Q, Fan Y, Wang X, et al. Energy & Environmental Science, 2014, 7(2), 655.
45 Peng G, Rui C, Zhou Y, et al. Electrochimica Acta, 2010, 55(12), 3876.
46 Sun W, Hu R, Zhang M, et al. Journal of Power Sources, 2016, 318(113), 120.
47 Tian H, Tan X, Xin F, et al. Nano Energy, 2015, 11(490), 499.
48 Xu R, Wang G, Zhou T, et al. Nano Energy, 2017, 39(253), 261.
49 Luo W, Wang Y, Chou S, et al. Nano Energy, 2016, 27(255), 264.
50 Liu Y, Wen Z Y, Wang X Y, et al. Journal of Power Sources, 2009, 189(1), 733.
51 Zhang F, Wan L, Chen J, et al. Electrochimica Acta, 2018, 280(86), 93.
52 Li X, Yang D, Hou X, et al. Journal of Alloys and Compounds, 2017, 728(1), 9.
53 Wen Z S, Yang J, Wang B F, et al. Electrochemistry Communications, 2003, 5(2), 165.
54 Lee J K, Kung M C, Trahey L, et al. Chemistry of Materials, 2009, 21(1), 6.
55 Yildiz O, Dirican M, Fang X, et al. Journal of the Electrochemical Society, 2019, 166(4), A473.
56 Xu Y, Yuan T, Bian Z, et al. Composites Communications, 2019, 11(1), 5.
57 Sourice J, Quinsac A, Leconte Y, et al. ACS Applied Materials & Interfaces, 2015, 7(12), 6637.
58 Liu R, Shen C, Dong Y, et al. Journal of Materials Chemistry A, 2018, 6(14797), 14804.
59 Liu Y, Hanai K, Yang J, et al. Electrochemical and Solid State Letters, 2004, 7(10), A369.
60 Sun Z, Wang G, Cai T, et al. Electrochimica Acta, 2016, 191(299), 306.
61 Demir C R, Titirici M M, Antonietti M, et al. Chemical Communications, 2008, 32(32), 3759.
62 Ys H, R D C, Mm T, et al. Angewandte Chemie International Edition, 2010, 47(9), 1645.
63 Shao D, Tang D, Mai Y, et al. Journal of Materials Chemistry A, 2013, 1(47), 15068.
64 Li Y, Liu W, Long Z, et al. Chemistry, 2018, 24(49), 12912.
65 Wu P, Wang H, Tang Y, et al. ACS Applied Materials & Interfaces, 2014, 6(5), 3546.
66 Bao Y, Yang Y Q, Ma J Z. Journal of Inorganic Materials, 2013, 28(5), 459 (in Chinese).
鲍艳, 杨永强, 马建中. 无机材料学报, 2013, 28(5), 459.
67 Li X, Meduri P, Chen X, et al. Journal of Materials Chemistry, 2012, 22(22), 11014.
68 Huang X, Sui X, Yang H, et al. Journal of Materials Chemistry A, 2018, 6(6), 2593.
69 Wang J, Yu Y, Gu L, et al. Nanoscale, 2013, 5(7), 2647.
70 Zhao C, Li Q, Wan W, et al. Journal of Materials Chemistry, 2012, 22(24), 12193.
71 Zheng Y, Yang J, Wang J, et al. Electrochimica Acta, 2007, 52(19), 5863.
72 Jiang Z, Li C, Hao S, et al. Electrochimica Acta, 2014, 115(3), 393.
73 Shen X, Mu D, Chen S, et al. Journal of Alloys and Compounds, 2013, 552(552), 60.
74 Ji L, Zhang X. Electrochemistry Communications, 2009, 11(6), 1146.
75 Wang M S, Fan L Z, Huang M, et al. Journal of Power Sources, 2012, 219(219), 29.
76 Tao H C, Fan L Z, Qu X. Electrochimica Acta, 2012, 71(71), 194.
77 Yue L, Zhang W, Yang J, et al. Electrochimica Acta, 2014, 125(12), 206.
78 Li X, Lei G, Li Z, et al. Solid State Ionics, 2014, 261(261), 111.
79 Tang F L, Lei J F, Cui Z Y, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 4046.
80 Chen H, He S, Hou X, et al. Electrochimica Acta, 2019, 312(242), 250.
81 Zuo X, Wang X, Xia Y, et al. Journal of Power Sources, 2019, 412(93), 104.
82 Xin X, Zhou X, Wang F, et al. Journal of Materials Chemistry, 2012, 22(16), 7724.
83 Zhang K, Xia Y, Yang Z, et al. RSC Advances, 2017, 7(39), 24305.
84 Ren J, He X, Wang K, et al. Ionics, 2010, 16(6), 503.
85 Zhang X, Zhou L, Huang M, et al. Ionics, 2019, 25(5), 2093.
86 Lu Z D, Liu N, Lee H W, et al. ACS Nano, 2015, 9(3), 2540.
87 Xu Y H, Zhu Y J, Han F D, et al. Advanced Energy Materials, 2015, 5(1), 7.
88 Zhang Z, Wang Y, Ren W, et al. Angewandte Chemie, 2014, 53(20), 5165.
89 Tang Y H, Sun X H, Au F C K, et al. Applied Physics Letters, 2001, 79(11), 1673.
90 Tang Y H, Sham T K, Jurgensen A, et al. Applied Physics Letters, 2002, 80(20), 3709.
91 Zhang M G, Smith A, Gorski W. Analytical Chemistry, 2004, 76(17), 5045.
92 Wang J, Musameh M. Analytical Chemistry, 2003, 75(9), 2075.
93 Luo Z, Lim S, Tian Z, et al. Journal of Materials Chemistry, 2011, 21(22), 8038.
94 Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2(5), 781.
95 Hsieh C C, Liu W R. Journal of Alloys and Compounds, 2019, 790, 829.
96 Kong X, Zheng Y, Wang Y, et al. Science Bulletin, 2019, 64(4), 261.
97 Yang Z X, Xia Y D, Mokaya R. Chemistry of Materials, 2005, 17(17), 4502.
98 Wei D, Liu Y, Wang Y, et al. Nano Letters, 2009, 9(5), 1752.
99 Wang W R, Zhou Y X, Li T, et al. In: Conference Record of the 2011 16th International Solid-State Sensors on Actuators and Microsystems. Beijing, China, 2011, 1602.
100 Guo B, Liu Q, Chen E, et al. Nano Letters, 2010, 10(12), 4975.
101 Li D J, Maiti U N, Lim J, et al. Nano Letters, 2014, 14(3), 1228.
102 Wang D, Zhou W, Zhang Y, et al. Nanotechnology, 2016, 27(4), 045405.
103 Tang X, Wen G, Song Y. Applied Surface Science, 2018, 436, 398.
104 Long D, Li W, Ling L, et al. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(20), 16096.
105 Wang D W, Gentle I R, Lu G Q. Electrochemistry Communications, 2010, 12(10), 1423.
106 Akula S, Parthiban V, Peera S G, et al. Journal of the Electrochemical Society, 2017, 164(6), F568.
107 An H, Li Y, Gao Y, et al. Carbon, 2017, 116, 338.
108 Peera S G, Arunchander A, Sahu A K. Carbon, 2016, 107, 667.
109 Li C, Chen T, Xu W, et al. Journal of Materials Chemistry A, 2015, 3(10), 5585.
110 Zou F, Hu X, Li Z, et al. Advanced Materials, 2014, 26(38), 6622.
111 Yue H, Shi Z, Wang Q, et al. ACS Applied Materials & Interfaces, 2014, 6(19), 17067.
112 Han Y, Qi P, Feng X, et al. ACS Applied Materials & Interfaces, 2015, 7(4), 2178.
113 Wang K, Pei S E, He Z S, et al. Chemical Engineering Journal, 2019, 356, 272.
[1] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[2] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[6] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[7] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[8] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[9] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[10] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[11] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[12] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[13] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[14] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[15] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed