Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3820-3824    https://doi.org/10.11896/cldb.18100133
  高分子与聚合物基复合材料 |
低比表面积酚醛树脂硬碳的制备及电化学性能
杨果1,马壮2,杨绍斌1,,董伟1,沈丁1
1 辽宁工程技术大学材料科学与工程学院,阜新 123000
2 辽宁科技学院冶金工程学院,本溪 117004
Synthesis of Phenolic Resin Hard Carbon with Low Specific Surface Area and Its Electrochemical Properties
YANG Guo1,MA Zhuang2,YANG Shaobin1,DONG Wei1,SHEN Ding1
1 College of Material Science and Engineering,Liaoning Technical University,Fuxin 123000
2 School of Metallurgy Engineering,Liaoning Institute of Science and Technology,Benxi 117004
下载:  全 文 ( PDF ) ( 2976KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以酚醛树脂为原料、正戊烷为发泡剂,采用发泡法制备了低比表面积的酚醛树脂硬碳。通过SEM、XRD、FTIR和N2吸附/脱附等方式表征了不同发泡剂添加量下硬碳材料的表面形貌和结构,以金属锂为对电极制备纽扣半电池并测试了其电化学性能。结果分析表明:正戊烷质量分数为20%的硬碳比表面积为1.62 m2·g-1,平均孔径为6.406 nm,(002)晶面层间距d002为0.394 nm,二维碳层尺寸La为1.417 nm,平行层群尺寸Lc为2.602 nm,碳产率为45.05%;在50 mA·g-1的电流密度下,其首次比容量达到318.7 mAh·g-1,首次库伦效率为68.9%,并且表现出良好的循环稳定性能和倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨果
马壮
杨绍斌
董伟
沈丁
关键词:  低比表面积  发泡  硬碳  锂离子电池  负极材料    
Abstract: This work presented a preparation approach for phenolic resin hard carbon with low specific surface area, which employed foaming method and took phenolic resin as raw material, N-Pentane as foaming agent. SEM, XRD, FTIR and N2 adsorption/desorption were adopted to characterize the surface morphology and structural features of the obtained hard carbon samples with various addition amount of foaming agents. Furthermore, the button half-cell was assembled by taking lithium metal as the electrode and the electrochemical performance of the half-cell was measured. According to results, with quality score is 20% of N-Pentane, the hard carbon sample exhibited the specific surface area of 1.62 m2·g-1, average pore size of 6.406 nm, d002 of 0.394 nm, La of 1.417 nm, Lc of 2.602 nm, and carbon yield of 45.05%. Regarding to the electrochemical performance, hard carbon sample with 20% N-Pentane held the first specific capacity of 318.7 mAh·g-1, initial coulomb efficiency of 68.9% at current density of 50 mA·g-1 and it also presented satisfactory cyclic stability and rate capacity.
Key words:  low specific surface area    foaming    hard carbon    lithium ion battery    anode material
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TM911  
基金资助: 国家自然科学基金(21808095)
作者简介:  杨果,硕士研究生,2016年9月至今就读于辽宁工程技术大学材料科学与工程学院,主要从事硬碳材料和锂电池领域的研究。
杨绍斌,辽宁工程技术大学材料科学与工程学院,教授,博士生导师。1986年本科毕业于大连理工大学,2000年获化学工艺专业博士学位。一直从事新型炭材料和新能源材料研究工作。重点研究锂离子电池、钠离子电池、超级电容器炭电极材料及其他电极材料,在国内外重要期刊发表文章30多篇,获发明专利20余项。
引用本文:    
杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
YANG Guo, MA Zhuang, YANG Shaobin, DONG Wei, SHEN Ding. Synthesis of Phenolic Resin Hard Carbon with Low Specific Surface Area and Its Electrochemical Properties. Materials Reports, 2019, 33(22): 3820-3824.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100133  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3820
[1] Li H,Wang Z X,Chen L Q,et al. Advanced Materials,2009,21(45),4593.
[2] Kang K S,Meng Y S,Breger J,et al. Science,2006,311(5763),977.
[3] Komaba S,Murata W,Ishikawa T,et al. Advanced Functional Materials, 2011,21,3859.
[4] Wenzel S,Hara T,Janek J,et al.Energy & Environmental Science,2011,4(9),3342.
[5] Alcantara R,Lavela P,Ortiz G F,et al.Electrochemical and Solid State Letters,2005,8(4),A222.
[6] Li Y M,Xu S Y,Wu X Y,et al.Journal of Materials Chemistry A,2015,3(1),71.
[7] Li Y M,Mu L Q, Hu Y S,et al.Energy Storage Materials,2015,10(3),306.
[8] Wang H L,Yu W H,Shi J,et al.Electrochimica Acta,2016,188,103.
[9] Gallego N C,Contescu C I,Meyer H M,et al.Carbon,2014,72,393.
[10] Su F B,Poh C K,Chen J S,et al.Energy & Environmental Science,2011,4(3),717.
[11] Rodriguez E,Camean I,Garcia R,et al.Electrochimica Acta,2011,56(14),5090.
[12] Shaikh M,Choudhury N R,Knott R,et al.European Journal of Pharmaceutics and Biopharmaceutics, 2016,101,82.
[13] Zhang X,Han S C,Fan C L,et al.Materials Letters,2015,138,259.
[14] Doi T,Iriyama Y,Abe T,et al.Journal of Power Sources,2005,142(1-2),329.
[15] Bulusheva L G,Okotrub A V, Kurenya A G,et al.Carbon,2011,49(12),4013.
[16] Qie L,Chen W M,Wang Z H,et al.Advanced Materials,2012,24(15),2047.
[17] Lotfabad E M,Ding J,Cui K,et al.ACS Nano,2014,8(7),7115.
[18] Wu G,Dai C S,Wang D L,et al.Journal of Materials Chemistry,2010,20(15),3059.
[19] An S J,Li J L,Daniel C,et al.Carbon,2016,105,52.
[20] Kaskhedikar N A,Maier J.Advanced Materials, 2009,21(25-26),2664.
[1] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[2] 任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[8] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[9] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[10] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[11] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[12] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[13] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[14] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[15] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[5] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[8] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed