Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3825-3828    https://doi.org/10.11896/cldb.18100098
  高分子与聚合物基复合材料 |
静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能
胡银春1,,程一竹1,王仁虎1,殷萌1,魏延1,杜晶晶1,黄棣1,陈维毅2
1 太原理工大学生物医学工程学院,纳米生物材料与再生医学研究中心,太原 030024
2 太原理工大学生物医学工程研究所, 材料强度与结构冲击山西省重点实验室, 太原 030024
Fabrication and Properties of Electrostatic Spinning Ag@MOF-5/β-CD Antibacterial Fiber Membrane
HU Yinchun1, CHENG Yizhu1, WANG Renhu1, YIN Meng1, WEI Yan1, DU Jingjing1, HUANG Di1, CHEN Weiyi2
1 Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024
2 Shanxi Key Labratory of Materials Strength & Structrual Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 2925KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备了金属有机骨架材料(MOF-5)和载银MOF-5(Ag@MOF-5),利用静电纺丝技术制备了具有三维交联网络结构的静电纺β-环糊精(β-CD)、MOF-5/β-CD、Ag@MOF-5/β-CD纤维膜。通过扫描电子显微镜(SEM)、高分辨透射电子显微镜和能谱(HRTEM&EDS)仪、热重分析(TG)仪、万能材料试验机及抑菌圈法对静电纺纤维膜进行了形貌、结构表征及性能测试。结果表明:Ag@ MOF-5纳米晶片中均匀负载大量直径为3~5 nm的球状银纳米粒子。静电纺β-CD纤维直径约为500 nm,分布均一,表面光滑平整;MOF-5、Ag@MOF-5加入纺丝液后,纤维直径分布不均,出现大量细丝且更为平直;Ag@MOF-5随成膜物质呈纤维状排列,大部分被成膜物包裹。纤维膜的耐热温度为250 ℃,MOF-5、Ag@MOF-5的加入不影响β-CD的交联过程、吸水特性及热分解温度;Ag@MOF-5的加入量可达1%(质量分数)且保持静电纺Ag@MOF-5/β-CD纤维膜的力学性能不降低。静电纺MOF-5/β-CD对两种菌的24 h抗菌性能受限,而Ag@MOF-5的加入量为0.5%(质量分数)时Ag@MOF-5/β-CD的24 h抗菌效果达到良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡银春
程一竹
王仁虎
殷萌
魏延
杜晶晶
黄棣
陈维毅
关键词:  金属有机骨架  银纳米粒子  静电纺丝  β-环糊精(β-CD)  抗菌材料    
Abstract: The metal-organic frameworks materials MOF-5 and silver-loaded MOF-5 (Ag@MOF-5) were prepared by hydrothermal method. Electrostatic spinning beta-Cyclodextrin(β-CD),MOF-5/β-CD,Ag@MOF-5/β-CD fiber membranes with three dimensional crosslinking network structure were prepared by electrostatic spinning and in situ thermal crosslinking methods. The morphology, structure characterization and properties of electrostatic spun fiber membranes were tested by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM&EDS), thermal weightlessness (TG), universal material testing machine and bacteriostatic method. The results show that Ag@MOF-5 nanocrystals are uniformly loaded with a large number of globular silver nanoparticles which is about 3—5 nm in diameter. The diameter of electrostatic spinning β-CD fiber is about 500 nm which is uniformly distributed and has smooth surface. When MOF-5 and Ag@MOF-5 were added into the spinning solution, the diameter of the fibers is not evenly distributed, and a large number of filaments appeared. Most of Ag@MOF-5 is a fibrous arrangement and wrapped by the fiber forming material. The heat resistance temperature of fiber membrane is 250 ℃. Ag@MOF-5 does not affect the crosslinking process, water absorption properties of thermal decomposition temperature of β-CD fiber membrane. The addition amount of Ag@MOF-5 can be up to 1wt%, and the mechanical properties of electrostatic spinning Ag@MOF-5/β-CD fiber membrane is not reduced. Electrostatic spinning MOF-5/β-CD has limited antibacterial properties against both bacteria, while 0.5wt% Ag@MOF-5/β-CD has achieved good 24 h antibacterial effect.
Key words:  metal-organic frameworks    silver nanoparticles    electrostatic spinning    beta-cyclodextrin (β-CD)    antibacterial materials
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  O646  
基金资助: 国家自然科学基金(11802197;115020158;11632013)
作者简介:  胡银春,太原理工大学,副教授。2013年1月毕业于中国石油大学(北京),材料学博士专业学位。同年加入太原理工大学工作至今,主要从事生物医用材料的研发,重点研究静电纺抗菌纤维膜、高分子水凝胶的制备、表征以及应用。在国内外重要期刊发表文章10余篇,申报发明专利3项。
引用本文:    
胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
HU Yinchun, CHENG Yizhu, WANG Renhu, YIN Meng, WEI Yan, DU Jingjing, HUANG Di, CHEN Weiyi. Fabrication and Properties of Electrostatic Spinning Ag@MOF-5/β-CD Antibacterial Fiber Membrane. Materials Reports, 2019, 33(22): 3825-3828.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100098  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3825
[1] Pirzada T, Arvidson S A, Saquing C D. Langmuir, 2012, 28(13), 5834.
[2] Miu Y E, Liu T X. Acta Polymerica Sinica, 2012(8), 801(in Chinese).谬月娥,刘天西.高分子学报, 2012(8),801.
[3] Huang Z M, Zhang Y Z, Kotaki M. Composites Science and Technology, 2003, 63(15), 2223.
[4] Wang Z A, Li N, Lyu W Y, et al. Acta Polymerica Sinica, 2018(6), 755(in Chinese).王振安,李楠, 吕汪洋, 等. 高分子学报, 2018(6),755.
[5] Tong L H. Chemistry of cyclodextrin, Science Press, China,2001(in Chinese).童林荟.环糊精化学,科学出版社, 2001.
[6] Zhao Q,Li S H,Liu Y. Progress in Chemistry,2018,30(5),673(in Chinese).赵倩, 李盛华,刘育.化学进展, 2018,30(5),673.
[7] Chen P, Liang H W, Lyu X H, et al. ACS Nano, 2011, 5(7),5928.
[8] Manakker F V D,Vermonden T, Nostrum C F V. Biomacromolecules, 2009, 10(12),3157.
[9] Chen H J, Xi X J, Ding W X. Chemical Journal of Chinese Universities, 2016,37(6), 1036(in Chinese).陈华军, 席晓晶,丁梧秀.高等学校化学学报,2016,37(6),1036.
[10] Kim Y K, Han S W, Min D H. ACS Applied Materials & Interfaces, 2012, 4(12), 6545.
[11] Francois P, Andreia F F, Menachem E. Chemical Society Reviews, 2015, 44(16), 5861.
[12] Du W X, Yang J, Sang Y X, et al. Chemical Journal of Chinese Universities, 2017, 38(3),346(in Chinese).杜文修,杨娟,桑玉祥,等.高等学校化学学报,2017,38(3),346.
[13] Jose R M, Jose L E, Alejandra C, et al. Nanotechnology,2005,16(10),2346.
[14] Joshi N, Ngwenya B T, Butler I B, et al. Journal of Hazardous Mate-rials,2015, 287,51.
[15] Liu Y,Xuan W M,Cui Y. Advanced Materials,2010,22(37),4112.
[16] Fu Y Y, Yan X P. Progress in Chemistry, 2013,25(2/3),221(in Chinese).付艳艳,严秀平.化学进展,2013, 25(2/3),221.
[17] Huang Z H, Lu L, Li D, et al. New Chemical Materials, 2017,45(4),239(in Chinese).黄忠辉,陆漓,李典,等.化工新型材料,2017,45(4),239.
[18] Yang B C, Jiang Y D, Qin X J,et al. Chemical Journal of Chinese Universities, 2012,33(1), 26(in Chinese).杨宝春,姜耀东,秦雪娟,等.高等学校化学学报, 2012,33(1), 26.
[19] Zhuang W J, Yuan D Q, Li J R, et al. Advanced Healthcare Materials,2012, 1(2), 225.
[20] Rowsell J L C, Millward A R, et al. Journal of the American Chemical Society, 2004, 126(18), 5666.
[21] Li H, Eddaoudi M, O’Keeffe M, et al. Nature,1999, 402(18),276.
[22] Kim H, Das S, Kim M G, et al. Inorganic Chemistry, 2011,50(8), 3691.
[23] Gabriela W, Bartosz M, Barbara G, et al. Drug Discovery Today,2016,21(6),1009.
[24] Vahid P, Seyed A K, Mehrorang G, et al. Ultrasonics Sonochemistry, 2018,40,1031.
[25] Zhang X R, Hu Y C, Xi S H, et al. Materials Review B:Research Papers, 2018, 32(2),545(in Chinese).张雪荣,胡银春,席少晖,等.材料导报:研究篇,2018,32(2),545.
[26] Park S W, Bae H S, Xing Z C, et al. Journal of Applied Polymer Scie-nce, 2009, 112(4), 2320.
[27] Zahedi P, Rezaeian I, Ranaei-Siadat S O, et al. Polymers for Advanced Technologies,2010,21(2),77.
[1] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[2] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[3] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[4] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[5] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[6] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[7] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[8] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[9] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[10] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[11] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[12] 张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
[13] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[14] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[15] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[5] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[8] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed