Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3829-3832    https://doi.org/10.11896/cldb.18090279
  高分子与聚合物基复合材料 |
模拟人体皮肤湿度响应特征和力学性质的皮肤模型
陈景民1,2,李久盛2,陈晋阳1,曾祥琼2
1 上海大学环境与化学工程学院,上海 200444
2 中国科学院上海高等研究院先进润滑材料实验室,上海 201210
A Skin Model Simulating Humidity Response Features and Mechanical Properties of Human Skin
CHEN Jingmin1,2, LI Jiusheng2, CHEN Jinyang1, ZENG Xiangqiong2
1 School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444
2 Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210
下载:  全 文 ( PDF ) ( 1846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优质的仿生皮肤模型(ASM)对皮肤接触材料的研究与开发至关重要,因此ASM的研究也备受重视。为了模拟人体皮肤的湿度响应特性和力学特性,将壳聚糖(CTS)水凝胶与聚二甲基硅氧烷(PDMS)复合构建了皮肤模型,并探索了二者的质量比以及固化剂的用量对ASM性能的影响。研究发现,随着固化剂用量的减少,ASM的水合度及吸水溶胀率均提高;当固化剂与PDMS的质量比小于1∶20时,ASM能够模拟人体皮肤水合度状态。材料表面力学性能测试试验机(UST)的测试表明,随着固化剂用量的减少,ASM的弹性模量降低,且当固化剂与PDMS的质量比为1∶50时,ASM的弹性模量随深度的变化与人体手臂皮肤随深度的变化一致,且干燥ASM的弹性模量比湿润ASM的弹性模量大,这也与人体皮肤的特性一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈景民
李久盛
陈晋阳
曾祥琼
关键词:  皮肤模型  弹性模量  吸水溶胀率  水合度    
Abstract: High-quality artificial skin model (ASM) plays a critical role in developing skin contacted materials, accordingly, the great efforts have been paid in the research of ASM. In this study, an artificial skin model was constructed by chitosan (CTS) hydrogel and polydimethylsiloxane (PDMS), aiming at simulating the humidity response and mechanical properties of human skin. Furthermore, the impact of the mass ratio of CTS and PDMS, and the content of curing agent on the performance of ASM were investigated. It was found that the increase of curing agent content contributed to the raise of hydration level and swelling rate of the ASM. The prepared ASM would well simulated diverse hydration degrees of human skin with mass ratio of the curing agent to the polydimethylsiloxane of less than 1∶20. The results of UST test indicated that the reduction of curing agent content would lead to the decline of elastic modulus of ASM. When the mass ratio of curing agent and PDMS was reduced to 1∶50, the ASM exhibited similar variation behaviors of elastic modulus to depth with human skin in inner forearm. Additionally, the elastic modulus of dry ASM was higher than that of wet ASM, which was consistent with the characteristics of human skin.
Key words:  artificial skin model    elastic modulus    water swelling rate    hydration
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TB332  
基金资助: 上海市自然科学基金(17ZR1442100);上海市科技创新行动计划国际合作项目(15540723600)
作者简介:  陈景民,2019年6月毕业于上海大学,获得工程硕士学位。于2017年5月至2019年6月在中国科学院上海高等研究院联合培养学习,主要从事仿生材料领域的研究。
曾祥琼,中国科学院上海高等研究院,研究员、博士研究生导师。上海交通大学材料学博士。2006—2010年在强生消费品集团公司开展皮肤护理技术研究,任职至资深科学家;2011—2015年在荷兰特温特大学表面技术与摩擦学实验室担任助理教授,开展皮肤摩擦学研究。自2015年11月加入中科院上海高等研究院,组建了“生物摩擦学实验室”,主要从事生物摩擦学及水基润滑领域功能界面材料研究。先后在摩擦学和表界面科学研究领域主流期刊发表论文50余篇,主持国家自然科学基金、上海市自然科学基金、European FP7 Marie Curie等项目6项,3M、Beiersdorf、Henkel、Johnson & Johnson等项目5项。
引用本文:    
陈景民,李久盛,陈晋阳,曾祥琼. 模拟人体皮肤湿度响应特征和力学性质的皮肤模型[J]. 材料导报, 2019, 33(22): 3829-3832.
CHEN Jingmin, LI Jiusheng, CHEN Jinyang, ZENG Xiangqiong. A Skin Model Simulating Humidity Response Features and Mechanical Properties of Human Skin. Materials Reports, 2019, 33(22): 3829-3832.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090279  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3829
[1] Zeng X, Van der Heide E. Skin Care Supplement to Household and Personal Care Today, 2015, 10(2), 14.
[2] Derler S, Gerhardt L C. Tribology Letters, 2012, 45(1), 1.
[3] Van der Heide E, Zeng X. Friction, 2013, 1(2), 130.
[4] Tan M, Li L S. Chemistry Bulletin, 2000, 63(11), 7 (in Chinese)谈敏, 李临生. 化学通报, 2000, 63(11),7.
[5] Lin L, Li J, Zeng X. Journal of the Society of Biomechanisms, 2017, 41(3), 129.
[6] Van der Heide E, Lossie C M, Van Bommel K J C, et al. Tribology Transactions, 2010, 53(6),842.
[7] Guerra C. Tribology Letters, 2011, 44(2),223.
[8] Morales-hurtado M, Zeng X, Gonzalez-Rodriguez P, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46,305.
[9] Lin L, Li J, Zeng X. Journal of the Society of Biomechanisms, 2017, 41(3), 129.
[10] Nachman M, Franklin S E. Tribology International, 2016, 97,431.
[11] Li H, Hu C, Yu H, et al. RSC Advances, 2018, 8(7),3736.
[12] Heinrich U, Koop U, Leneveuduchemin M C, et al. International Journal of Cosmetic Science, 2010, 25(1-2),45.
[13] Van Kuilenburg J, Masen M A, Van Der Heide E. Part J-Journal of Engineering Tribology,2013,227 (4), 349.
[14] Pailler-Mattei C, Bec S, Zahouani H. Medical Engineering & Physics, 2008, 30,599.
[15] Chen Jingmin, Yang Hongmei, Li Jiusheng, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 308.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[3] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[4] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[5] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[6] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[7] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[8] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[9] 周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
[10] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed