Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2072-2077    https://doi.org/10.11896/j.issn.1005-023X.2018.12.025
  材料研究 |
水泥基管材力学性能评价方法
聂光临,包亦望,万德田,田远
中国建筑材料科学研究总院,绿色建筑材料国家重点实验室,北京100024
Methods for Evaluating Mechanical Properties of Cement-based Tubes
NIE Guanglin, BAO Yiwang, WAN Detian, TIAN Yuan
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024
下载:  全 文 ( PDF ) ( 3693KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基管材已广泛应用于市政、工业、能源等领域,准确的力学性能评价对管材构件的结构性能评估和质量控制至关重要。为解决水泥基管材力学性能难以评价的技术难题,针对缺口环和闭口环两种样品形式,基于材料力学理论推导了缺口环法与闭口环法测量管材弹性模量和弯曲强度的计算公式。利用缺口环法、闭口环法与三点弯曲法分别测得了硫铝酸盐水泥砂浆缺口环试样、闭口环试样与梁试样的弹性模量和弯曲强度。结果表明:三种方法所测得的弹性模量值与弯曲强度值均相近,由此证明缺口环法与闭口环法可以准确有效地测得管材试样的弹性模量和弯曲强度。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂光临
包亦望
万德田
田远
关键词:  水泥基管材  弹性模量  弯曲强度  缺口环法  闭口环法  三点弯曲法    
Abstract: Cement-based tubes are widely used in the municipal, industrial, energy and other fields, and the accurate determination of the mechanical properties is very important to the structural performance evaluation and quality control of the tube components. To solve the difficult technical issues for the mechanical determination of the cement-based tubes, the analytic formulas of the elastic modulus and bending strength were deduced based on the theory of material mechanics for the split ring and closed ring samples, respectively. The split ring method, closed ring method and three-point bending method were used to evaluate the elastic modulus and bending strength of the split ring, closed ring and beam pieces which were prepared by the sulphoaluminate cement mortar, respectively. The experimental results show that the elastic modulus and bending strength measured by the three methods are very close, and demonstrate the validity and correctness of the split ring method and closed ring method.
Key words:  cement-based tubes    elastic modulus    bending strength    split ring method    closed ring method    three-point bending method
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TU502  
基金资助: 国家自然科学基金(51472227);“863计划”(2015AA034204);国家重点研发计划(2017YFB0310400)
作者简介:  聂光临:男,1990年生,博士研究生,研究方向为脆性材料力学性能评价 E-mail:buildingmaterials8@163.com 包亦望:通信作者,男,1957年生,博士,教授,博士研究生导师,研究方向为脆性材料的力学性能评价技术和材料优化设计 E-mail:ywbao@ctc.ac.cn
引用本文:    
聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
NIE Guanglin, BAO Yiwang, WAN Detian, TIAN Yuan. Methods for Evaluating Mechanical Properties of Cement-based Tubes. Materials Reports, 2018, 32(12): 2072-2077.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.025  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2072
1 Rostami V, Shao Y, Boyd A J. Durability of concrete pipes subjected to combined steam and carbonation curing[J]. Construction and Building Materials,2011,25:3345.
2 Fuente A, Escariz R C, Figueiredo A D, et al. A new design method for steel fibre reinforced concrete pipes[J]. Construction and Buil-ding Materials,2012,30:547.
3 Binici H, Durgun M Y, R zaolu T, et al. Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates[J]. Scientia Iranica,2012,19(3):366.
4 He T, Duan M L, Wang J L, et al. On the external pressure capacity of deepwater sandwich pipes with inter-layer adhesion conditions[J]. Applied Ocean Research,2015,52:115.
5 Noushini A, Aslani F, Castel A, et al. Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete[J]. Cement and Concrete Composites,2016,73:136.
6 Nath P, Sarker P K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete[J]. Construction and Building Materials,2017,130:22.
7 Chen B, Cai Y B, Ding J T, et al. Measurement of early age concrete elastic modulus based on thermal stress test[J]. Journal of Building Materials,2016,19(4):785(in Chinese).
陈波,蔡跃波,丁建彤,等.基于温度-应力试验的早龄期混凝土弹性模量量测[J].建筑材料学报,2016,19(4):785.
8 Tang J Y, Gao D Y, Zhu H T, et al. Influence of steel fiber on fle-xural property of high strength concrete[J]. Journal of Building Materials,2010,13(1):85(in Chinese).
汤寄予,高丹盈,朱海堂,等.钢纤维对高强混凝土弯曲性能影响的试验研究[J].建筑材料学报,2010,13(1):85.
9 Emirolu M, Beyciolu A, Yildiz S. ANFIS and statistical based approach to prediction the peak pressure load of concrete pipes including glass fiber[J]. Expert Systems with Applications,2012,39:2877.
10 中国建筑科学研究院.GB/T 50082-2009普通混凝土长期性能和耐久性能试验方法研究[S].北京:中国建筑工业出版社,2009.
11 Rao S K, Sravana P, Rao T C. Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand[J]. International Journal of Pavement Research and Technology,2016,9:289.
12 ASTM Committe. ASTM C580-02 Standard test method for flexural strength and modulus of elasticity of chemical resistant mortars, grouts, monolithic surfacings, and polymer concretes[S].US:ASTM International,2012:3.
13 全国水泥标准化技术委员会.GB/T 17671-1999水泥胶砂强度检验方法(ISO法)[S].北京:中国标准出版社,1999:9.
14 中国建筑科学研究院.GB/T 50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003:21.
15 Hajali M, Alavinasab A, Shdid C A. Structural performance of bu-ried prestressed concrete cylinder pipes with harnessed joints interaction using numerical modeling[J]. Tunnelling and Underground Space Technology,2016,51:11.
16 Huang J, Zhou Z D, Zhang D S, et al. Online monitoring of wire breaks in prestressed concrete cylinder pipe utilising fibre bragg gra-ting sensors[J]. Measurement,2016,79:112.
17 全国水泥制品标准化技术委员会.GB/T 11836-2009混凝土和钢筋混凝土排水管[S].北京:中国标准出版社,2009:2.
18 刘鸿文.材料力学 下册[M].第3版.北京:高等教育出版社,1992:183.
19 Wan D T, Bao Y W, Liu X G, et al. Evaluation of elastic modulus and strength of glass and brittle ceramic materials by compressing a notched ring specimen[J]. Advanced Materials Research,2011,177:114.
20 Liu Z, Bao Y W, Wan D T, et al. A novel method to evaluate Young’s modulus of ceramics at high temperature up to 2 100 ℃[J]. Ceramics International,2015,41:12835.
21 International Organization of standardization. ISO 18558:2015 Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of ceramic tube and rings[S]. Switzerland: ISO,2015:5.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[3] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[4] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[5] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[6] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[7] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[8] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[9] 周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
[10] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[11] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed