Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 121-124    https://doi.org/10.11896/j.issn.1005-023X.2017.016.025
  材料研究 |
Si-O-C界面对C/Si-C-N复合材料性能的影响*
卢国锋
渭南师范学院化学与材料学院, 渭南 714099
Influence of Si-O-C Interlayer on the Properties of C/Si-C-N Composites
LU Guofeng
College of Chemistry and Materials, Weinan Normal University, Weinan 714099
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用CVI工艺制备基体、PIP方法制备界面,成功制备出了具有Si-O-C界面层的碳纤维增强Si-C-N陶瓷基复合材料(C/Si-O-C/Si-C-N),研究了Si-O-C界面层对C/Si-C-N复合材料力学性能、抗氧化性能和热膨胀性能的影响。结果表明,C/Si-C-N陶瓷基复合材料在采用Si-O-C界面层后,相对于采用热解碳界面的同类复合材料,其抗氧化性能明显提高,强度则基本相当,在实验温度区间内,平均热膨胀系数略有升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢国锋
关键词:  抗氧化性能  弯曲强度  热膨胀  陶瓷基复合材料    
Abstract: The carbon fiber reinforced Si-C-N ceramic matrix composite with a Si-O-C interlayer(C/Si-O-C/Si-C-N) was fabricated with the matrix fabricated by CVI and the interphase fabricated by PIP. The influence of Si-O-C interlayer on the mechanical properties, oxidation resistance and thermal expansion properties of the composites was investigated. The results indicate that compared to the C/Si-C-N with a pro-carbon interlayer(C/PyC/Si-C-N), the oxidation resistance of C/Si-C-N composite with a Si-O-C interlayer (C/Si-O-C/Si-C-N) was improved. The strength of C/Si-O-C/Si-C-N can compare with that of C/PyC/Si-C-N. The ave-rage coefficient of thermal expansion of C/Si-O-C/Si-C-N was higher than that of C/PyC/Si-C-N throughout the experimental tempe-rature range.
Key words:  oxidation resistance    flexural strength    thermal expansion    ceramic matrix composites
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB332  
基金资助: 陕西省教育厅科研计划项目(16JK1269)
作者简介:  卢国锋:男,1971年生,博士,副教授,主要研究方向为陶瓷基复合材料和功能陶瓷材料 E-mail:luguof75@163.com
引用本文:    
卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
LU Guofeng. Influence of Si-O-C Interlayer on the Properties of C/Si-C-N Composites. Materials Reports, 2017, 31(16): 121-124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.025  或          http://www.mater-rep.com/CN/Y2017/V31/I16/121
1 Lu G F, Qiao S R, Zhang C Y, et al. Oxidation behaviors of carbon fiber reinforced Si-C-N matrix composite[J]. J Chin Ceram Soc,2008,36(11):66(in Chinese).
卢国锋,乔生儒,张程煜,等. 碳纤维增强Si-C-N陶瓷基复合材料的氧化行为[J]. 硅酸盐学报,2008,36(11):66.
2 Labruquère S, Blanchard H, Pailler R, et al. Enhancement of the oxidation resistance of interfacial area in C/C composites.Part Ⅱ: Oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. J Eur Ceram Soc,2002,22:1011.
3 Lu G F, et al. Oxidation protection of C/Si-C-N composite by a mullite interphase[J]. Composites Part A,2008,39(9):1467.
4 Lu G F, et al. Oxidation behaviors and mechanisms of C/Si-C-N with a mullite interlayer[J]. Adv Compos Mater,2011,20(2):179.
5 Lu G F, Qiao S R, et al. Structure and flexural behavior of C/mullite/Si-C-N composite[J]. J Mater Eng,2011(9):82(in Chinese).
卢国锋,乔生儒,等. C/Mullite/Si-C-N复合材料的组织结构及其弯曲行为研究[J]. 材料工程,2011(9):82.
6 Saha A, Raj R. Crystallization maps for SiCO amorphous ceramics[J]. J Am Ceram Soc,2007,90(2):578.
7 Kolárˇ F, Machovicˇ V, Svítilová J, et al. Structural characterization and thermal oxidation resistance of silicon oxycarbides produced by polysiloxane pyrolysis[J]. Mater Chem Phys,2004,86:88.
8 Moysan C, Riedel R, et al. Mechanical characterization of a polysiloxane-derived SiOC glass[J]. J Eur Ceram Soc,2007,27:397.
9 Wang S, Chen Z, Ma Q, et al. Effect of fiber surface state on mechanical properties of Cf/Si-O-C composites [J]. Mater Sci Eng A,2005,407:245.
10 Manocha L M, Manocha S M. Studies on solution-derived ceramic coatings for oxidation protection of carbon-carbon composites[J]. Carbon,1995,33(4):435.
11 Lu Guofeng, et al. Fabrication and oxidation behaviors of C/Si-C-N composites[J]. J Mater Eng,2010(3):13(in Chinese).
卢国锋,等. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程,2010(3):13.
12 Guo W M, Xiao H N, Yasuda E, et al. Oxidation kinetics and mechanisms of a 2D-C/C composite [J]. Carbon,2006,44:3269.
13 Xu Y D, Cheng L F, Zhang L T, et al. Oxidation behavior and mechanical properties of C/SiC composites with Si-MoSi2 oxidation protection coating[J]. J Mater Sci,1999,34:6009.
14 Pantano C G, Singh A K, Zhang H. Silicon oxycarbide glasses[J]. J Sol-Gel Sci Technol,1999,14:7.
15 Baxter R I, Rawlings R D, Iwashita N, et al. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J]. Carbon,2000,38:441.
16 Fei W D, Wang L D. Thermal expansion behavior and thermal mismatch stress of aluminum matrix composite reinforced by β-eucryptite particle and aluminum borate whisker[J]. Mater Chem Phys,2004,85:450.
[1] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[2] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[3] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[4] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[5] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[6] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[7] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[8] 杜文博, 姚正军, 陶学伟, 罗西希. 钛合金表面梯度Al2O3陶瓷涂层的高温抗氧化性能*[J]. 《材料导报》期刊社, 2017, 31(14): 57-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed