Abstract: In the manufacturing cost of semiconductor components, the spending of packaging materials are second only to silicon wafers, and more than the cost of lead frame and photoresist. The effects of adhesive materials are the major facts on the packaging functionality. Epoxy adhesives are widely used in electronics assembly and packaging. They combine numerous desirable properties including low shrinkage, thermal stability, anti-UV properties and more environmentally friendly than lead-containing solder. Advanced packaging is developing towards high-density integration, high-power load and miniaturization, and more complicated packaging structures, which meet the needs for adhesives with more excellent performances. Epoxies may undermine the stability and reliability of packaged devices, because of high thermal expansion coefficient, inherent brittleness and easy cracking. How to improve the brittleness and thermal expansion of epoxy adhesives, to achieve comprehensive properties become a research hotspot in recent years. Through the additives of novel carbon nanoparticles and rubber, the brittleness and thermal expansion of epoxy adhesives can be altered and tailored for specific applications. Due to the rigidity-enhancing effect of nanoparticles, the strength and glass transition temperature of epoxy adhesive can be greatly improved;the toughness of epoxy adhesive can be significantly modified by rubber, but it may lose some strength and thermo-mechanical properties. Only rigid nanoparticles or rubber modification could not meet the stringent requirements of advanced packaging on mechanical properties of epoxy adhesives. In recent years, the effects of common impact modifiers rigid nanoparticles and liquid rubber on the mechanical properties of filled epoxy adhesives have attracted considerable attention, the composites of which were endowed with better properties of toughness and strength without weakening other performances. In addition, the ratio of free volume in the adhesive reduced by the interaction of rigid nanoparticles and epoxy resins, and the thermal expansion of polymer chain restrained by the tight binding of nanoparticles, both of which could markedly decrease the thermal expansion coefficient of epoxy adhesive. For epoxy/rubber nanocomposite adhesive system, because of the toughening of epoxy resin with rubber, is able to dissipate stresses and dampen the driving force of expansion. The interfacial bonding strength between the modified material and epoxy matrix can be improved through the surface functional modification of rigid nanoparticles and the design of the terminal structure of rubber, and promoting the uniform dispersion of the modified substance in the matrix is the key to promote the improvement of mechanical properties. The formulation of epoxy adhesive is intricate, combined with multi-scale modeling and high-throughput calculation of machine learning, the relationship between its structure and mechanical properties can be simulated and predicted, which will greatly shorten the research and development cycle of advanced epoxy adhesives. The recent developments for the improvement of the brittleness and thermal expansion of epoxy adhesives with the novel carbon nanoparticles and rubber were reviewed in this paper. The structural changes and corresponding modification mechanism caused by the addition of rigid nanoparticles and rubber in epoxy adhesive were investigated. Among them, the uniform dispersion of modified materials and the interfacial bonding strength with epoxy matrix were the key factors affecting the mechanical properties. To simulate the microstructure and predict mechanical properties of epoxy adhesives by the machine learning is of great significance for the development of advanced epoxy adhesives.
余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
YU Chunxiu, WANG Yunkai, HE Zijuan, LI Wei, CHEN Jialin, LI Shihong, LI Junpeng. Research Progress on Modification of Epoxy Adhesives for Electronic Packaging. Materials Reports, 2023, 37(15): 21120084-10.
1 Wan Y J, Li G, Yao Y M, et al. Composites Communications, 2020, 19, 154. 2 Chruściel J J, Leśniak E. Progress in Polymer Science, 2015, 41, 67. 3 Chatterjee S, Wang J, Kuo W, et al. Chemical Physics Letters, 2012, 531, 6. 4 Park Y T, Qian Y, Chan C, et al. Advanced Functional Materials, 2015, 25(4), 575. 5 Balakrishnan S, Start P, Raghavan D, et al. Polymer, 2005, 46(25), 11255. 6 Chikhi N, Fellahi S, Bakar M. European Polymer Journal, 2002, 38(2), 251. 7 Hsu Y G, Liang C W. Journal of Applied Polymer Science, 2007, 106(3), 1576. 8 Tripathi G, Srivastava D. Materials Science and Engineering:A, 2008, 496 (1-2), 483. 9 Kunz-Douglass S, Beaumont P W, Ashby M. Journal of Materials Science, 1980, 15(5), 1109. 10 Thomas S, Sinturel C, Thomas R. Micro and nanostructured epoxy/rubber blends, John Wiley & Sons, US, 2014. 11 Liu S, Zhao B, Jiang L, et al. Journal of Materials Chemistry C, 2018, 6(2), 257. 12 Phua J L, Teh P L, Ghani S A, et al. International Journal of Polymer Science, 2016, 2016, 1. 13 Hadipeykani M, Aghadavoudi F, Toghraie D. Physica A:Statistical Mechanics and Its Applications, 2020, 546, 123995. 14 Chun H, Park S Y, Park S J, et al. Composites Part a:Applied Science and Manufacturing, 2020, 137, 105937. 15 Carlberger T, Biel A, Stigh U. International Journal of Fracture, 2009, 155(2), 155. 16 Avendaño R, Carbas R, Marques E, et al. Composite Structures, 2016, 152, 34. 17 Akpinar I A, Gürses A, Akpinar S, et al. The Journal of Adhesion, 2018, 94(11), 847. 18 Sugaya T, Obuchi T, Sato C. Journal of Solid Mechanics and Materials Engineering, 2011, 5(12), 921. 19 Karac A, Blackman B, Cooper V, et al. Engineering Fracture Mechanics, 2011, 78(6), 973. 20 Al-Saleh M H, Sundararaj U. Carbon, 2009, 47(1), 2. 21 De Volder M F, Tawfick S H, Baughman R H, et al. science, 2013, 339(6119), 535. 22 Scarpa F, Adhikari S, Phani A S. Nanotechnology, 2009, 20(6), 065709. 23 Shi G, Araby S, Gibson C T, et al. Advanced Functional Materials, 2018, 28(19), 1706705. 24 Li X, Chen Y, Cheng Z, et al. Applied Energy, 2014, 130, 824. 25 Araby S, Li J, Shi G, et al. Composites Part A:Applied Science and Ma-nufacturing, 2017, 101, 254. 26 Araby S, Qiu A, Wang R, et al. Journal of Materials Science, 2016, 51(20), 9157. 27 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75. 28 Monti M, Rallini M, Puglia D, et al. Composites Part A:Applied Science and Manufacturing, 2013, 46, 166. 29 Richardson M C, Park E S, Kim J H, et al. Journal of Applied Polymer Science, 2010, 117(2), 1120. 30 Kilic U, Sherif M M, Ozbulut O E. Polymer Testing, 2019, 76, 181. 31 Yang S Y, Lin W N, Huang Y L, et al. Carbon, 2011, 49(3), 793. 32 Wernik J, Meguid S. Materials & Design, 2014, 59, 19. 33 Han S, Meng Q, Araby S, et al. Composites Part A:Applied Science and Manufacturing, 2019, 120, 116. 34 Marouf B T, Mai Y W, Bagheri R, et al. Polymer Reviews, 2016, 56(1), 70. 35 Shukla M K, Sharma K. Polymer Science, Series A, 2019, 61(4), 439. 36 Aradhana R, Mohanty S, Nayak S K. Polymer, 2018, 141, 109. 37 Prasad K E, Das B, Maitra U, et al. Proceedings of the National Academy of Sciences, 2009, 106(32), 13186. 38 Al-Saleh M H. Synthetic Metals, 2015, 209, 41. 39 Ghaleb Z, Mariatti M, Ariff Z. Journal of Reinforced Plastics and Composites, 2017, 36(9), 685. 40 Szeluga U, Kumanek B, Trzebicka B. Composites Part A:Applied Science and Manufacturing, 2015, 73, 204. 41 Kumar A, Sharma K, Dixit A R. Journal of Materials Science, 2019, 54(8), 5992. 42 Jen Y M, Chang H H, Lu C M, et al. Polymers (Basel), 2020, 13(1), 84. 43 Rafiee M A, Rafiee J, Srivastava I, et al. Small, 2010, 6(2), 179. 44 Nadiv R, Shachar G, Peretz-Damari S, et al. Carbon, 2018, 126, 410. 45 Nguyen D D, Tai N H, Chen S Y, et al. Nanoscale, 2012, 4(2), 632. 46 Yu D, Dai L. The Journal of Physical Chemistry Letters, 2010, 1(2), 467. 47 Loos M, Yang J, Feke D, et al. Composites Science and Technology, 2012, 72(4), 482. 48 Gkikas G, Barkoula N M, Paipetis A. Composites Part B:Engineering, 2012, 43(6), 2697. 49 Ji X, Xu Y, Zhang W, et al. Composites Part A:Applied Science and Manufacturing, 2016, 87, 29. 50 Jiao J Q. Guangdong Chemical Industry, 2016, 5(43), 109(in Chinese). 焦俊卿. 广东化工, 2016, 5 (43), 109. 51 Zhao Y, Huang X L, Wang G, et al. Chemistry and Adhesion, 2013, 35(2), 49(in Chinese). 赵 颖, 黄伣丽, 王 刚, 等. 化学与黏合, 2013, 35(2), 49. 52 Shan G F, Yang w, Li W M, et al. Polymer Bulletin, 2005(5), 11(in Chinese). 单桂芳, 杨伟, 李忠明, 等. 高分子通报, 2005(5), 11. 53 Xu S, Song X, Cai Y, et al. Materials, 2016, 9(8), 640. 54 Gao W, Cao X, Chen M, et al. Journal of Applied Polymer Science, 2021, 138(19), 50407. 55 Kang H, Lee J H, Choe Y, et al. Nanomaterials, 2022, 12(14), 2353. 56 Wang J, Xue Z, Li Y, et al. Polymer, 2018, 140, 39. 57 Hsieh T, Kinloch A, Taylor A, et al. Journal of Materials Science, 2011, 46(23), 7525. 58 Tang L C, Zhang H, Sprenger S, et al. Composites Science and Technology, 2012, 72(5), 558. 59 Liang Y, Pearson R. Polymer, 2010, 51(21), 4880. 60 Kausar A. Journal of Macromolecular Science, Part A, 2020, 57(7), 499. 61 Zaimova D, Bayraktar E, Miskioglu I. Mechanics of composite and multi-functional materials, Springer, Germany, 2016, pp. 191. 62 Wang F, Drzal L T, Qin Y, et al. Composites Part A:Applied Science and Manufacturing, 2016, 87, 10. 63 Gu H, Zhang H, Ma C, et al. Carbon, 2019, 142, 131. 64 Xue G, Xing J Y, Zhang B, et al. China Adhesives, 2020, 29(3), 131(in Chinese). 薛 刚, 邢继烨, 张 斌, 等. 中国胶粘剂, 2020, 29(3), 131. 65 Huang J, Liew J, Ademiloye A, et al. Archives of Computational Methods in Engineering, 2021, 28(5), 3399. 66 Yin B B, Liew K M. Composite Structures, 2021, 273, 114328. 67 Ajayan P, Ravikumar V, Charlier J C. Physical Review Letters, 1998, 81(7), 1437. 68 Tsafack T, Alred J M, Wise K E, et al. Carbon, 2016, 105, 600. 69 Arash B, Wang Q, Varadan V. Scientific Reports, 2014, 4(1), 1. 70 Eitan A, Jiang K, Dukes D, et al. Chemistry of Materials, 2003, 15(16), 3198. 71 Jensen B D, Wise K E, Odegard G M. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2), 025012. 72 Odegard G M, Gates T, Wise K, et al. Composites Science and Technology, 2003, 63(11), 1671. 73 Rahman A, Deshpande P, Radue M S, et al. Composites Science and Technology, 2021, 207, 108627. 74 Suriati G, Mariatti M, Azizan A. Polymer Bulletin, 2012, 70 (1), 311. 75 Tan Y Y, Zhang Y, Jiang G L, et al. Polymers (Basel), 2020, 12(3), 675. 76 Périchaud M G, Delétage J Y, Frémont H, et al. Microelectronics Reliability, 2000, 40(7), 1227. 77 Wu G, Jiang M. IEEE Access, 2019, 7, 171923. 78 Li M, Tudor J, Torah R, et al. In:2017 IEEE 67th Electronic Components and Technology Conference (ECTC). Stress Analysis of Flexible Packaging for the Integration of Electronic Components within Woven Textiles. Orlando, 2017, pp. 2133. 79 Akpinar I A, Gültekin K, Akpinar S, et al. Composites Part B:Enginee-ring, 2017, 110, 420. 80 Suriati G, Mariatti M, Azizan A. Journal of Materials Science:Materials in Electronics, 2010, 22(1), 56. 81 Renteria J, Nika D, Balandin A. Applied Sciences, 2014, 4(4), 525. 82 Mandhakini M, Chandramohan A, Jayanthi K, et al. Materials & Design, 2014, 64, 706. 83 Oxfall H, Ariu G, Gkourmpis T, et al. Express Polymer Letters, 2015, 9(1), 66. 84 Kim Y J, Chun H, Park S Y, et al. Polymer, 2018, 147, 81.