Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120084-10    https://doi.org/10.11896/cldb.21120084
  高分子与聚合物基复合材料 |
电子封装用环氧胶粘剂改性研究进展
余春秀1, 王云凯1, 贺子娟2, 李玮2, 陈家林1,2, 李世鸿2, 李俊鹏1,2,*
1 昆明贵金属研究所,昆明 650106
2 贵研铂业股份有限公司,昆明 650106
Research Progress on Modification of Epoxy Adhesives for Electronic Packaging
YU Chunxiu1, WANG Yunkai1, HE Zijuan2, LI Wei2, CHEN Jialin1,2, LI Shihong2, LI Junpeng1,2,*
1 Kunming Institute of Precious Metals, Kunming 650106, China
2 Sino-Platinum Metals Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 18559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在半导体元器件的制造成本中,封装材料成本是仅次于硅晶片的重要开支,超过了引线框架和光刻胶所占的成本比例。先进封装向着高密度集成、高功率负载、微型化发展,封装结构变得更加复杂,对封装材料提出了更高的要求。环氧胶粘剂收缩率小、耐热性好、耐紫外老化、与锡铅焊料相比环境友好,是使用最广泛的一类封装材料。但其存在升温热膨胀系数高、固有的脆性和易开裂问题,影响封装器件的结构稳定性和服役可靠性,如何改善环氧胶粘剂的脆性和热膨胀性,提升其综合性能成为近年的研究热点。
在环氧胶粘剂中引入纳米粒子和橡胶可以改善其脆性和热膨胀性。纳米粒子的刚性增强效应可极大提升环氧胶粘剂的强度和玻璃化转变温度,橡胶增韧环氧胶粘剂可显著改善其韧性,但会损失一定的强度和热机械性能。纳米粒子和橡胶的单一改性不能满足先进封装对环氧胶粘剂材料力学性能的苛刻要求,二者的复合改性可同时兼顾韧性和强度且不影响其他所需性能。通过刚性纳米粒子的表面功能化改性以及橡胶的末端结构设计改善改性物质与环氧基体的界面结合强度、促进改性物质在基体中的均匀分散是提升胶粘剂综合力学性能的关键。此外,环氧胶粘剂中刚性纳米粒子的存在降低了体系中自由体积所占的比例,以及刚性纳米粒子的紧密结合作用共同抑制了聚合物链的热膨胀;橡胶改善了胶粘剂的韧性,使得体系的热应力可以更好地消散,膨胀的驱动力也随之减小。环氧胶粘剂的配方复杂,结合机器学习的多尺度建模高通量计算,对其结构与力学性能关系进行模拟预测,可极大缩短先进环氧胶粘剂的研发周期。
本文综述了近年来新型碳纳米粒子和橡胶改善环氧胶粘剂脆性和热膨胀性的研究进展,分析了环氧胶粘剂中添加刚性纳米粒子和橡胶带来的结构变化以及相应的改性机理,其中改性物质的均匀分散以及与环氧基体的界面结合强度是影响力学性能的关键因素,结合机器学习对环氧胶粘剂的微观结构与力学性能进行模拟预测,对推进先进环氧胶粘剂的发展具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余春秀
王云凯
贺子娟
李玮
陈家林
李世鸿
李俊鹏
关键词:  力学性能  碳纳米粒子  热膨胀系数(CTE)  液体橡胶  机器学习(ML)    
Abstract: In the manufacturing cost of semiconductor components, the spending of packaging materials are second only to silicon wafers, and more than the cost of lead frame and photoresist. The effects of adhesive materials are the major facts on the packaging functionality. Epoxy adhesives are widely used in electronics assembly and packaging. They combine numerous desirable properties including low shrinkage, thermal stability, anti-UV properties and more environmentally friendly than lead-containing solder. Advanced packaging is developing towards high-density integration, high-power load and miniaturization, and more complicated packaging structures, which meet the needs for adhesives with more excellent performances. Epoxies may undermine the stability and reliability of packaged devices, because of high thermal expansion coefficient, inherent brittleness and easy cracking. How to improve the brittleness and thermal expansion of epoxy adhesives, to achieve comprehensive properties become a research hotspot in recent years.
Through the additives of novel carbon nanoparticles and rubber, the brittleness and thermal expansion of epoxy adhesives can be altered and tailored for specific applications. Due to the rigidity-enhancing effect of nanoparticles, the strength and glass transition temperature of epoxy adhesive can be greatly improved;the toughness of epoxy adhesive can be significantly modified by rubber, but it may lose some strength and thermo-mechanical properties. Only rigid nanoparticles or rubber modification could not meet the stringent requirements of advanced packaging on mechanical properties of epoxy adhesives. In recent years, the effects of common impact modifiers rigid nanoparticles and liquid rubber on the mechanical properties of filled epoxy adhesives have attracted considerable attention, the composites of which were endowed with better properties of toughness and strength without weakening other performances. In addition, the ratio of free volume in the adhesive reduced by the interaction of rigid nanoparticles and epoxy resins, and the thermal expansion of polymer chain restrained by the tight binding of nanoparticles, both of which could markedly decrease the thermal expansion coefficient of epoxy adhesive. For epoxy/rubber nanocomposite adhesive system, because of the toughening of epoxy resin with rubber, is able to dissipate stresses and dampen the driving force of expansion. The interfacial bonding strength between the modified material and epoxy matrix can be improved through the surface functional modification of rigid nanoparticles and the design of the terminal structure of rubber, and promoting the uniform dispersion of the modified substance in the matrix is the key to promote the improvement of mechanical properties. The formulation of epoxy adhesive is intricate, combined with multi-scale modeling and high-throughput calculation of machine learning, the relationship between its structure and mechanical properties can be simulated and predicted, which will greatly shorten the research and development cycle of advanced epoxy adhesives.
The recent developments for the improvement of the brittleness and thermal expansion of epoxy adhesives with the novel carbon nanoparticles and rubber were reviewed in this paper. The structural changes and corresponding modification mechanism caused by the addition of rigid nanoparticles and rubber in epoxy adhesive were investigated. Among them, the uniform dispersion of modified materials and the interfacial bonding strength with epoxy matrix were the key factors affecting the mechanical properties. To simulate the microstructure and predict mechanical properties of epoxy adhesives by the machine learning is of great significance for the development of advanced epoxy adhesives.
Key words:  mechanical properties    carbon nanoparticles    coefficient of thermal expansion (CTE)    liquid rubber    machine learning(ML)
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TB33  
  TQ43  
基金资助: 国家自然科学基金(51771084);云南省重大科研专项(202002AB080001-1;202102AB080008-5);云南省基础研究专项-面上项目(202001AT070061);昆明市科技创新中心示范建设计划(2019-1-G-25318000003420)
通讯作者:  * 李俊鹏,昆明贵金属研究所研究员,博士研究生导师。2004年本科毕业于兰州大学,2011年于兰州大学获得博士学位,同年入职贵研铂业股份有限公司,2016年于昆明贵金属研究所博士后出站,主要从事信息电子材料和贵金属纳米材料研究及应用。先后主持国家级、省部级重点科研项目13项,在Journal of Physical Chemistry Letters、Polymer等期刊发表论文40余篇,出版学术著作1部,获得授权国家发明专利16项。lijunpeng@ipm.com.cn   
作者简介:  余春秀,本科毕业于中国地质大学(武汉)材料化学专业,现为昆明贵金属研究所硕士研究生,目前主要从事新型碳纳米材料和液体橡胶改性环氧胶粘剂的研究。
引用本文:    
余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
YU Chunxiu, WANG Yunkai, HE Zijuan, LI Wei, CHEN Jialin, LI Shihong, LI Junpeng. Research Progress on Modification of Epoxy Adhesives for Electronic Packaging. Materials Reports, 2023, 37(15): 21120084-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120084  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120084
1 Wan Y J, Li G, Yao Y M, et al. Composites Communications, 2020, 19, 154.
2 Chruściel J J, Leśniak E. Progress in Polymer Science, 2015, 41, 67.
3 Chatterjee S, Wang J, Kuo W, et al. Chemical Physics Letters, 2012, 531, 6.
4 Park Y T, Qian Y, Chan C, et al. Advanced Functional Materials, 2015, 25(4), 575.
5 Balakrishnan S, Start P, Raghavan D, et al. Polymer, 2005, 46(25), 11255.
6 Chikhi N, Fellahi S, Bakar M. European Polymer Journal, 2002, 38(2), 251.
7 Hsu Y G, Liang C W. Journal of Applied Polymer Science, 2007, 106(3), 1576.
8 Tripathi G, Srivastava D. Materials Science and Engineering:A, 2008, 496 (1-2), 483.
9 Kunz-Douglass S, Beaumont P W, Ashby M. Journal of Materials Science, 1980, 15(5), 1109.
10 Thomas S, Sinturel C, Thomas R. Micro and nanostructured epoxy/rubber blends, John Wiley & Sons, US, 2014.
11 Liu S, Zhao B, Jiang L, et al. Journal of Materials Chemistry C, 2018, 6(2), 257.
12 Phua J L, Teh P L, Ghani S A, et al. International Journal of Polymer Science, 2016, 2016, 1.
13 Hadipeykani M, Aghadavoudi F, Toghraie D. Physica A:Statistical Mechanics and Its Applications, 2020, 546, 123995.
14 Chun H, Park S Y, Park S J, et al. Composites Part a:Applied Science and Manufacturing, 2020, 137, 105937.
15 Carlberger T, Biel A, Stigh U. International Journal of Fracture, 2009, 155(2), 155.
16 Avendaño R, Carbas R, Marques E, et al. Composite Structures, 2016, 152, 34.
17 Akpinar I A, Gürses A, Akpinar S, et al. The Journal of Adhesion, 2018, 94(11), 847.
18 Sugaya T, Obuchi T, Sato C. Journal of Solid Mechanics and Materials Engineering, 2011, 5(12), 921.
19 Karac A, Blackman B, Cooper V, et al. Engineering Fracture Mechanics, 2011, 78(6), 973.
20 Al-Saleh M H, Sundararaj U. Carbon, 2009, 47(1), 2.
21 De Volder M F, Tawfick S H, Baughman R H, et al. science, 2013, 339(6119), 535.
22 Scarpa F, Adhikari S, Phani A S. Nanotechnology, 2009, 20(6), 065709.
23 Shi G, Araby S, Gibson C T, et al. Advanced Functional Materials, 2018, 28(19), 1706705.
24 Li X, Chen Y, Cheng Z, et al. Applied Energy, 2014, 130, 824.
25 Araby S, Li J, Shi G, et al. Composites Part A:Applied Science and Ma-nufacturing, 2017, 101, 254.
26 Araby S, Qiu A, Wang R, et al. Journal of Materials Science, 2016, 51(20), 9157.
27 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75.
28 Monti M, Rallini M, Puglia D, et al. Composites Part A:Applied Science and Manufacturing, 2013, 46, 166.
29 Richardson M C, Park E S, Kim J H, et al. Journal of Applied Polymer Science, 2010, 117(2), 1120.
30 Kilic U, Sherif M M, Ozbulut O E. Polymer Testing, 2019, 76, 181.
31 Yang S Y, Lin W N, Huang Y L, et al. Carbon, 2011, 49(3), 793.
32 Wernik J, Meguid S. Materials & Design, 2014, 59, 19.
33 Han S, Meng Q, Araby S, et al. Composites Part A:Applied Science and Manufacturing, 2019, 120, 116.
34 Marouf B T, Mai Y W, Bagheri R, et al. Polymer Reviews, 2016, 56(1), 70.
35 Shukla M K, Sharma K. Polymer Science, Series A, 2019, 61(4), 439.
36 Aradhana R, Mohanty S, Nayak S K. Polymer, 2018, 141, 109.
37 Prasad K E, Das B, Maitra U, et al. Proceedings of the National Academy of Sciences, 2009, 106(32), 13186.
38 Al-Saleh M H. Synthetic Metals, 2015, 209, 41.
39 Ghaleb Z, Mariatti M, Ariff Z. Journal of Reinforced Plastics and Composites, 2017, 36(9), 685.
40 Szeluga U, Kumanek B, Trzebicka B. Composites Part A:Applied Science and Manufacturing, 2015, 73, 204.
41 Kumar A, Sharma K, Dixit A R. Journal of Materials Science, 2019, 54(8), 5992.
42 Jen Y M, Chang H H, Lu C M, et al. Polymers (Basel), 2020, 13(1), 84.
43 Rafiee M A, Rafiee J, Srivastava I, et al. Small, 2010, 6(2), 179.
44 Nadiv R, Shachar G, Peretz-Damari S, et al. Carbon, 2018, 126, 410.
45 Nguyen D D, Tai N H, Chen S Y, et al. Nanoscale, 2012, 4(2), 632.
46 Yu D, Dai L. The Journal of Physical Chemistry Letters, 2010, 1(2), 467.
47 Loos M, Yang J, Feke D, et al. Composites Science and Technology, 2012, 72(4), 482.
48 Gkikas G, Barkoula N M, Paipetis A. Composites Part B:Engineering, 2012, 43(6), 2697.
49 Ji X, Xu Y, Zhang W, et al. Composites Part A:Applied Science and Manufacturing, 2016, 87, 29.
50 Jiao J Q. Guangdong Chemical Industry, 2016, 5(43), 109(in Chinese).
焦俊卿. 广东化工, 2016, 5 (43), 109.
51 Zhao Y, Huang X L, Wang G, et al. Chemistry and Adhesion, 2013, 35(2), 49(in Chinese).
赵 颖, 黄伣丽, 王 刚, 等. 化学与黏合, 2013, 35(2), 49.
52 Shan G F, Yang w, Li W M, et al. Polymer Bulletin, 2005(5), 11(in Chinese).
单桂芳, 杨伟, 李忠明, 等. 高分子通报, 2005(5), 11.
53 Xu S, Song X, Cai Y, et al. Materials, 2016, 9(8), 640.
54 Gao W, Cao X, Chen M, et al. Journal of Applied Polymer Science, 2021, 138(19), 50407.
55 Kang H, Lee J H, Choe Y, et al. Nanomaterials, 2022, 12(14), 2353.
56 Wang J, Xue Z, Li Y, et al. Polymer, 2018, 140, 39.
57 Hsieh T, Kinloch A, Taylor A, et al. Journal of Materials Science, 2011, 46(23), 7525.
58 Tang L C, Zhang H, Sprenger S, et al. Composites Science and Technology, 2012, 72(5), 558.
59 Liang Y, Pearson R. Polymer, 2010, 51(21), 4880.
60 Kausar A. Journal of Macromolecular Science, Part A, 2020, 57(7), 499.
61 Zaimova D, Bayraktar E, Miskioglu I. Mechanics of composite and multi-functional materials, Springer, Germany, 2016, pp. 191.
62 Wang F, Drzal L T, Qin Y, et al. Composites Part A:Applied Science and Manufacturing, 2016, 87, 10.
63 Gu H, Zhang H, Ma C, et al. Carbon, 2019, 142, 131.
64 Xue G, Xing J Y, Zhang B, et al. China Adhesives, 2020, 29(3), 131(in Chinese).
薛 刚, 邢继烨, 张 斌, 等. 中国胶粘剂, 2020, 29(3), 131.
65 Huang J, Liew J, Ademiloye A, et al. Archives of Computational Methods in Engineering, 2021, 28(5), 3399.
66 Yin B B, Liew K M. Composite Structures, 2021, 273, 114328.
67 Ajayan P, Ravikumar V, Charlier J C. Physical Review Letters, 1998, 81(7), 1437.
68 Tsafack T, Alred J M, Wise K E, et al. Carbon, 2016, 105, 600.
69 Arash B, Wang Q, Varadan V. Scientific Reports, 2014, 4(1), 1.
70 Eitan A, Jiang K, Dukes D, et al. Chemistry of Materials, 2003, 15(16), 3198.
71 Jensen B D, Wise K E, Odegard G M. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2), 025012.
72 Odegard G M, Gates T, Wise K, et al. Composites Science and Technology, 2003, 63(11), 1671.
73 Rahman A, Deshpande P, Radue M S, et al. Composites Science and Technology, 2021, 207, 108627.
74 Suriati G, Mariatti M, Azizan A. Polymer Bulletin, 2012, 70 (1), 311.
75 Tan Y Y, Zhang Y, Jiang G L, et al. Polymers (Basel), 2020, 12(3), 675.
76 Périchaud M G, Delétage J Y, Frémont H, et al. Microelectronics Reliability, 2000, 40(7), 1227.
77 Wu G, Jiang M. IEEE Access, 2019, 7, 171923.
78 Li M, Tudor J, Torah R, et al. In:2017 IEEE 67th Electronic Components and Technology Conference (ECTC). Stress Analysis of Flexible Packaging for the Integration of Electronic Components within Woven Textiles. Orlando, 2017, pp. 2133.
79 Akpinar I A, Gültekin K, Akpinar S, et al. Composites Part B:Enginee-ring, 2017, 110, 420.
80 Suriati G, Mariatti M, Azizan A. Journal of Materials Science:Materials in Electronics, 2010, 22(1), 56.
81 Renteria J, Nika D, Balandin A. Applied Sciences, 2014, 4(4), 525.
82 Mandhakini M, Chandramohan A, Jayanthi K, et al. Materials & Design, 2014, 64, 706.
83 Oxfall H, Ariu G, Gkourmpis T, et al. Express Polymer Letters, 2015, 9(1), 66.
84 Kim Y J, Chun H, Park S Y, et al. Polymer, 2018, 147, 81.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed