Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21080241-11    https://doi.org/10.11896/cldb.21080241
  无机非金属及其复合材料 |
公路路面乳化沥青冷再生技术综述
王梦浩1, 王朝辉1,*, 高璇2, 高峰3, 肖绪荡1
1 长安大学公路学院,西安 710064
2 中交第一公路勘察设计研究院有限公司,西安 710065
3 中陕核健康产业有限公司,西安 710100
Emulsified Asphalt Cold Recycled Technology for Highway Pavement: a State-of-the-art Review
WANG Menghao1, WANG Chaohui1,*, GAO Xuan2, GAO Feng3, XIAO Xudang1
1 School of Highway, Chang’an University, Xi’an 710064, China
2 CCCC First Highway Consultants Co.,Ltd., Xi’an 710065, China
3 Sino Shaanxi Nuclear Health Industry Co., Ltd., Xi’an 710100, China
下载:  全 文 ( PDF ) ( 7150KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 公路路面乳化沥青冷再生混合料作为一种绿色铺面材料,因在延长道路寿命的同时增加了沥青旧料的利用率,逐渐受到关注。近年来,学者们针对如何提升乳化沥青冷再生混合料使用品质进行了深入研究并取得了一定成果。研究成果分为两方面:乳化沥青冷再生混合料配合比设计与优化方法、混合料各项性能改善,这一系列成果使其成功应用于实体工程。研究成果丰硕但较为散乱,尚未汇总并推荐科学合理的乳化沥青冷再生混合料配合比设计方法、等级化评价乳化沥青冷再生混合料力学及路用性能。
基于此,梳理评价了乳化沥青冷再生技术相关规范及其技术参数,调查总结了乳化沥青冷再生技术研究动态和实体工程配合比设计、乳化沥青混合料的相关力学性能及路用性能,推荐了混合料配合比设计区间,提出了混合料单项性能划分等级。结果表明:水泥用量、乳化沥青用量、最佳含水率、粒径小于9.5 mm的再生沥青混合料(RAP)掺量、粒径大于9.5 mm的RAP掺量及总RAP掺量的推荐区间分别是1.5%~2.0%、3.2%~4.5%、3.8%~6.5%、28%~49%、38%~58%及79%~98%;对于粗粒式沥青混合料,4.75 mm及以下的筛孔通过百分率低于级配中值,13.2 mm及以上的筛孔通过百分率高于级配中值;根据数据分布特性将混合料单项性能划分为四个等级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梦浩
王朝辉
高璇
高峰
肖绪荡
关键词:  道路工程  乳化沥青冷再生技术  配合比设计  力学性能  路用性能  性能等级划分    
Abstract: As a kind of green road material, emulsified asphalt cold recycled mixture has come to the fore and drawn wide concern because of improving the service life of asphalt pavement and increasing the utilization rate of recycled asphalt mixture. Recently, the researchers have made intensive works to improve the use quality of emulsified asphalt cold recycled mixture and acquired certain achievements. The research results can be classified into the following two aspects:the ratio design and optimization methods of emulsified asphalt cold recycled mixture, and improvement of the mixture’s various properties. These achievements have found remarkable application in practical projects. The research results are rich but scattered. The ratio design of emulsified asphalt methods cold recycled mixture have not been recommended scientifically and reasonably. Moreover, the mechanical properties and road performance of emulsified asphalt cold recycled mixture have not been evaluated hierarchically.
Based on this, the relevant specifications and technical parameters of emulsified asphalt cold recycled technology were combed and evaluated. Then, the ratio design, mechanical property, and road performance of emulsified asphalt cold recycled mixtures (including research works andpractical projects) are comprehensively investigated and summarized. After that, the ratio design range is recommended and the classification standard of single performance grade of emulsified asphalt cold recycled mixture is put forward. The results show that the recommended ranges of cement content, emulsified asphalt content, optimum moisture content, RAP content with particle size less than 9.5 mm, RAP content with particle size greater than 9.5 mm, and total RAP content are 1.5%—2.0%, 3.2%—4.5%, 3.8%—6.5%, 28%—49%, 38%—58%, and 79%—98%, respectively. For the coarse mineral aggregate of asphalt mixture, the sieve holes passing percentages of particle size with and below 4.75 mm are lower than the median gradation of asphalt mixture, and the sieve holes passing percentages of particle size with and above 13.2 mm are higher than the median gradation of asphalt mixture in the specification. Each single performance of the asphalt mixture is divided into four grades according to the data distribution characteristics.
Key words:  road engineering    emulsified asphalt cold recycled technology    ratio design of mixture    mechanical property    road performance    grading of performance
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  U414  
基金资助: 陕西省创新能力支撑计划项目(2022TD-07)
通讯作者:  * 王朝辉,长安大学公路学院教授、博士研究生导师,交通运输部青年科技英才,陕西省青年科技标兵,美国俄克拉荷马州立大学访问学者,国际稀浆罩面协会、中国公路建设行业协会等学术机构专家委员会委员。2003年毕业于长安大学,获工学学士学位;2008年毕业于长安大学,获工学博士学位。2008年加入长安大学公路学院道路研究所工作至今,主要从事绿色功能型道路新材料与新技术的开发及应用研究。参编行业规范、团体标准及地方规范5部;以第一作者/通信作者身份发表学术论文130余篇,其中SCI/EI 90余篇;获国家授权发明专利80余项。wchh0205@chd.edu.cn   
作者简介:  王梦浩,2017年毕业于河南城建学院,获得工学学士学位,2022年毕业于长安大学,获工学博士学位。师从王朝辉教授,主要从事绿色道路新材料及新技术的研究。 发表学术论文8篇,其中SCI检索6篇,授权国家发明专利5项。
引用本文:    
王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
WANG Menghao, WANG Chaohui, GAO Xuan, GAO Feng, XIAO Xudang. Emulsified Asphalt Cold Recycled Technology for Highway Pavement: a State-of-the-art Review. Materials Reports, 2023, 37(7): 21080241-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080241  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21080241
1 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 1 (in Chinese).
中国公路学报编辑部. 中国公路学报, 2020, 33(10), 1.
2 Chen Q, Song L, Wang S, et al. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(2), 83(in Chinese).
陈谦, 宋亮, 王帅, 等. 重庆交通大学学报(自然科学版), 2021, 40(2), 83.
3 TabakovićA, Mcnally C, Fallon E. Construction and Building Materials, 2016, 102(1), 318.
4 Deng J L. Research on interface strength mechanism of emulsified asphalt cold reclaimed mixture, Master's Thesis, Southeast University, China, 2021 (in Chinese).
邓交龙. 乳化沥青冷再生混合料界面强度机理研究. 硕士学位论文, 东南大学, 2021.
5 Valentin J, Čížková Z, Suda J, et al. Transportation Research Procedia, 2016, 14, 758.
6 Konieczna K, Pokorski P, Sorociak W, et al. Materials, 2020, 13(23), 1.
7 Filho W, Klinsky L, Motta R, et al. Advances in Materials Science and Engineering, 2020, 2020, 1.
8 Wang D C, Chang H L, Hao P W, et al. Journal of Chang’an University (Natural Science Edition), 2020, 200 (6), 35 (in Chinese).
汪德才, 常昊雷, 郝培文, 等. 长安大学学报(自然科学版), 2020, 200(6), 35.
9 Haider S W. In:6th RILEM International Conference on Cracking in Pavements. Chicago, 2008, pp.529.
10 Stephen C, Warren C, Henry J, et al. Transportation Research Record, 2011, 2227, 43.
11 Ministry of Transport of the People's Republic of China. JTGT 5521-2019, Technical specifications for highway asphalt pavement recycling, China Communications Press, China, 2019 (in Chinese).
交通运输部. JTGT 5521-2019, 公路沥青路面再生技术规范, 人民交通出版社, 2019.
12 Jiangsu Provincial Bureau of Quality and Technical Supervision. DB32/T 2884-2016, Technical specifications for construction of emulsified asphalt cold recycling, China Communications Press, China, 2016 (in Chinese).
江苏省质量技术监督局. DB32/T 2884-2016, 乳化沥青冷再生路面施工技术规范, 人民交通出版社, 2016.
13 Shandong market supervision and Administration Bureau. DB37/T3566-2019, Technical specification for cold in-plant recycling by emulsified asphalt in asphalt pavement, China Communications Press, China, 2019 (in Chinese).
山东省市场监督管理局. DB37/T3566-2019, 沥青路面乳化沥青厂拌冷再生技术规范, 人民交通出版社, 2019.
14 Shanghai Municipal Housing and Urban Rural Construction Management Committee. DGTJ08-2185-2015, Technical specification for asphalt pavement cold recycling, China Communications Press, China, 2015 (in Chinese).
上海市住房和城乡建设管理委员会. DGTJ08-2185-2015, 沥青路面冷再生技术规程, 人民交通出版社, 2015.
15 US Department of Defense. ASTM D2397, Standard specification for cationic emulsified asphalt, American Association of State Highway and Transportation Officials, USA, 2005.
16 US Department of Defense. ASTM D6930, Test method for settlement and storage stability of emulsified asphalt, American Association of State Highway and Transportation Officials, USA, 2010.
17 US Department of Defense. ASTM D6935, Test method for determining cement mixing of emulsified asphalt, American Association of State Highway and Transportation Officials, USA, 2011.
18 US Department of Defense. ASTM D75, Standard practice for sampling aggregates, American Association of State Highway and Transportation Officials, USA, 2014.
19 US Department of Defense. ASTM D977, Standard specification for emulsified asphalt, American Association of State Highway and Transportation Officials, USA, 2017.
20 US Department of Defense. ASTM D7196, Standard method for raveling test of cold mixed emulsified asphalt samples, American Association of State Highway and Transportation Officials, USA, 2012.
21 Comité Européen de Normalisation. BS EN 13808-2005, Bitumen and bituminous binders. Framework for specifying cationic bituminous emulsions, British Standards Institution, UK, 2005.
22 Comité Européen de Normalisation. BS EN 434-2-2006, Bitumen road emulsions-Part 2:Code of practice for the use of cationic bitumen emulsions on roads and other paved areas, British Standards Institution, UK, 2006
23 Zhang Q, Hou D H, Shi J C, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2662 (in Chinese).
张庆, 侯德华, 史纪村, 等. 硅酸盐通报, 2020, 39(8), 2662.
24 Wang D C, Hao P W. Journal of Beijing University of Technology, 2020, 46(8), 963 (in Chinese).
汪德才, 郝培文. 北京工业大学学报, 2020, 46(8), 963.
25 Gao J, Yang J G, Yu D, et al. Construction and Building Materials, 2021, 278, 122389.
26 Li H X. Research on the performance of asphalt cold recycled mixture and pavement structure, Master's Thesis, Beijing Jiaotong University, China, 2019 (in Chinese).
李华旭. 沥青冷再生混合料性能与路面结构研究. 硕士学位论文, 北京交通大学, 2019.
27 Pi Y, Huang Z, Pi Y, et al. Materials, 2019, 12(17), 2682.
28 Gao L, Wang Z, Liu Y, et al. Materials, 2019, 12(17), 2718.
29 Jiang J, Ni F, Zheng J, et al. The International Journal of Pavement Engineering, 2020, 21(1), 41.
30 Yang J G, Tao W J, Gao J, et al. Construction and Building Materials, 2021, 296, 123681.
31 Liang H G. Design of cold recycled asphalt pavement structure in Tanshao expressway rehabilitation, Master's Thesis, Hunan University, China, 2018(in Chinese).
梁衡国. 潭邵高速公路大修冷再生沥青路面结构设计. 硕士学位论文, 湖南大学, 2018.
32 Pi Y, Huang Z, Pi Y, et al. Materials, 2019, 12(17), 2682.
33 Jiang C Y. Investigation on application of cold recycling technology in asphalt pavement. Master's Thesis, Chang’an University, China, 2018 (in Chinese).
蒋春阳. 沥青路面冷再生技术应用调查研究. 硕士学位论文, 长安大学, 2019.
34 Wang C H, Wang M H, Chen Q, et al. Journal of Cleaner Production, 2022, 333, 130142.
35 Qiu W. Study on influence on the performance of asphalt pavement coo-ling reclamation from rap feature. Master's Thesis, Chongqing jiaotong University, China, 2017 (in Chinese).
邱伟. RAP特性对乳化沥青路面冷再生性能影响的研究. 硕士学位论文, 重庆交通大学, 2017.
36 Suo L J. Jorunal of Functional Materials,2022, 53(6), 6224(in Chinese).
锁利军. 功能材料,2022, 53(6), 6224.
37 Yang D G. Highway, 2020, 65(3), 1 (in Chinese).
杨东光. 公路, 2020, 65(3), 1.
38 Ding X D, Cao X M. Bulletin of the Chinese Ceramic Society, 2020, 281(2), 129 (in Chinese).
丁新东, 曹新明. 硅酸盐通报, 2020, 281(2), 129.
39 Jiang Y J, Wang R X, Liu P, et al. Journal of Dalian University of Technology, 2020, 60(1), 62 (in Chinese).
蒋应军, 王瑞祥, 刘鹏, 等. 大连理工大学学报, 2020, 60(1), 62.
40 Chen Q, Wang C H, Fan Z T. Materials Reports B:Research Papers, 2019, 33(5), 1659 (in Chinese).
陈谦, 王朝辉, 樊振通, 等. 材料导报:研究篇, 2019, 33(5), 1659.
41 Zhang J S, Wu C F, Liang H G, et al. Highway Engineering, 2019, 44(6), 217 (in Chinese).
张继森, 吴超凡, 梁衡国, 等. 公路工程, 2019, 44 (6), 217.
42 Ma F, Zhu C X, Fu Z, et al. Jorunal of Functional Materials,2022, 53(9), 9108(in Chinese).
马峰, 祝崇鑫, 傅珍, 等. 功能材料,2022, 53(9), 9108.
43 Yang J, Tao W, Gao J, et al. Construction and Building Materials, 2021, 296, 123681.
44 Amouzadeh O M, Modarres A. Journal of Materials in Civil Engineering, 2019, 31(6), 04019061.1.
45 Jiang Y, Lin H, Han Z, et al. Sustainability, 2019, 11(12), 3483.
46 Chen S, Zheng W, Paramitha P A. Journal of Testing and Evaluation, 2019, 47(3), 20170773.
47 Chen Q, Wang C H, Fu H, et al. Materials Reports, 2021, 35(16), 16172 (in Chinese).
陈谦, 王朝辉, 傅豪, 等. 材料导报, 2021, 35(16), 16172.
48 Jiang Y J, Han Z C, Hu Y L. Journal of Nanjing University of Science and Technology, 2019, 43(2), 186 (in Chinese).
蒋应军, 韩占闯, 胡永林. 南京理工大学学报:自然科学版, 2019, 43(2), 186.
49 Cui Y N, Du C X, Guo L D. Jorunal of Functional Materials, 2022, 53(10), 10116(in Chinese).
崔亚楠, 杜春晓, 郭立典. 功能材料,2022, 53(10), 10116.
50 Wu W B, Jin C, Ren B. Highway, 2019, 64(7), 280 (in Chinese).
武文斌, 金成, 任斌. 公路, 2019, 64(7), 280.
51 Chen Q, Wang C H, Fu H, et al. China Journal of Highway and Transport, 2021, 34(7), 236.
陈谦, 王朝辉, 傅豪, 等. 中国公路学报, 2021, 34(7), 236.
52 Sun L J, Cheng H L, Liu L P, et al. Journal of Tongji University (Natural Science), 2017, 11(45), 76 (in Chinese).
孙立军, 程怀磊, 刘黎萍, 等. 同济大学学报(自然科学版), 2017, 11(45), 76.
53 Jin C, Jia X L, Ren B. Highway, 2017, 12 (62), 262 (in Chinese).
金成, 贾小龙, 任斌. 公路, 2017, 12(62), 262.
54 Wu Y H. Effect of cement on the performance of central plant cold recycling mixture using emulsified asphalt. Master's Thesis, Shenyang Jianzhu University, China, 2017 (in Chinese).
邬宇航. 水泥对乳化沥青厂拌冷再生材料性能影响研究. 硕士学位论文, 沈阳建筑大学, 2017.
55 Tian J. Study on performance and structure adaptability of cold recycled mixture of reclaimed asphalt pavement. Master's Thesis, Shandong University, China, 2017 (in Chinese).
田隽. 沥青铣刨料冷再生混合料性能与路面结构适应性研究. 硕士学位论文, 山东大学, 2017.
56 Dong S. Study on meso-structure movement and deformation failure mec-hanism of cold recycled mixture under repeated load. Master's Thesis, Shenyang Jianzhu University, China, 2018(in Chinese).
董帅. 重复荷载下冷再生混合料细观结构运动及变形破坏机理研究. 硕士学位论文, 沈阳建筑大学, 2018.
57 Zhang W T, Dong W. Advanced course of SPSS statistical analysis, Higher Education Press, China, 2013(in Chinese).
张文彤, 董伟. SPSS统计分析高级教程, 高等教育出版社, 2013.
58 Guo F C, Pei J Z, Zhang J P, et al. Construction and Building Materials, 2020, 256, 119474.
59 Wang M H, Wang C H, Huang S, et al. Journal of Cleaner Production, 2021, 38, 128596.
60 Guo F C, Li R, Lu S H, et al. Materials, 2020, 13(7), 1556.
61 Gao L, Wang Z, Liu Y, et al. Materials, 2019, 12(17), 2718.
62 Jiang Y J, Wang R X, Liu P, et al. Journal of Dalian University of Technology, 2020, 60(1), 62(in Chinese).
蒋应军, 王瑞祥, 刘鹏, 等. 大连理工大学学报, 2020, 60(1), 62.
63 Ma R D. Study on the performance of water-borne acrylic modified emulsified asphalt cold regenerated mixture. Master's Thesis, Beijing Architecture University, China, 2018 (in Chinese).
马榕达. 水性丙烯酸改性乳化沥青冷再生混合料性能研究. 硕士学位论文, 北京建筑大学, 2018.
[1] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[2] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[3] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[4] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[5] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[6] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[7] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[8] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[9] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[10] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[11] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[12] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[13] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[14] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed