Abstract: Multi-energy field assisted processing is an important direction for the development of advanced manufacturing technology. Electropulsing treatment (EPT) is an innovative technology, which has been used to improve the microstructure and mechanical properties of metallic materials by applying electric pulse current. The EPT has broad promising applications in the manufacturing industry. Due to the advantages of energy saving and high efficiency that can quickly heat up materials, EPT has preponderance over conventional heat treatment in terms of improving material plasticity, promoting recrystallization and phase transformation. The response of microstructure and mechanical properties of metal materials to EPT has attracted wide attention. The coupling effects, including joule heating effect, electromigration effect and other electroplastic effects, could enhance the atomic diffusion and dislocation migration to improve the forming ability. In addition, pulse current can significantly promote grain refinement, solid-state phase transition, and texture weakening, so as to obtain excellent comprehensive mechanical properties. In addition, EPT can repair internal porosities and cracks of the material to effectively inhibit the crack propagation and improve the fracture behavior. Based on the existing research, the effect of EPT on the microstructure and mechanical properties of materials has been summarized and the mechanism is preliminarily analyzed from the aspects of grain refinement, solid-state phase transition, and crack repair. Moreover, the related researches on the formation characteristics and performance of welded joints after EPT are also included in the paper. Finally, the follow-up research on EPT is discussed.
郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
HAO Sijie, CHU Qiang, LI Wenya, YANG Xiawei, ZOU Yangfan. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Metallic Materials:a Review. Materials Reports, 2023, 37(4): 21030039-9.
1 Troitskii O A, Likhtman V I. Soviet Physics Doklady, 1963,8, 91. 2 Okazaki K, Kagawa M, Conrad H. Materials Science and Engineering, 1980, 45(2), 109. 3 Sheng Y, Hua Y, Wang X, et al. Materials, 2018, 11(2), 185. 4 Zhang R, Li X, Kuang J, et al. Materials Science and Technology, 2017, 33(12), 1421. 5 Ding J H, Li H, Bian T J, et al. Acta Aeronautica et Astronautica Sinica, 2018, 39(1), 20(in Chinese). 丁俊豪, 李恒, 边天军, 等. 航空学报, 2018, 39(1), 20. 6 Kang K J, Li D Y, Wang A, et al. Results in Physics, 2020, 16, 103016. 7 Ye Y, Kure C S Z, Sun Z, et al. Materials & Design, 2018, 149, 214. 8 Yang C L, Yang H J, Zhang Z J, et al. Scripta Materialia, 2018, 147, 88. 9 Wu W C, Wang Y J, Sun B L, et al. Hot Working Technology, 2014, 43(2), 82 (in Chinese). 武伟超, 王永军, 孙宝龙, 等. 热加工工艺, 2014, 43(2), 82. 10 Zhang J T. Research on post weld electropulsing treatment of friction stir welding joints of 2024 aluminum alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019 (in Chinese). 章锦涛. 2024铝合金搅拌摩擦焊接头焊后电脉冲处理工艺研究. 硕士学位论文, 南京航空航天大学, 2019. 11 Zhang H, Zhang X. Journal of Materials Science & Technology, 2020, 36, 149. 12 Molotskii M I. Materials Science and Engineering A, 2000, 287(2), 248. 13 Zhao S T, Zhang R P, Chong Y, et al. Nature Materials, 2020, 20(4), 468. 14 Zhu Y H, To S, Lee W B, et al. Materials Science and Engineering A, 2009, 501(1), 125. 15 Krishnaswamy H, Kim M J, Hong S T, et al. Materials & Design, 2017, 124, 131. 16 Xiang S Q, Zhang X F. Materials Science and Engineering A, 2019, 761, 138026. 17 Liu J Y, Zhang K F. Materials Science and Technology, 2016, 32(6), 540. 18 Barnak J P, Sprecher A F, Conrad H. Scripta Metallurgica et Materialia, 1995, 32(6), 879. 19 Tang B, Yan C, Zhao Z L, et al. Foundry Technology, 2005, 27(4), 306(in Chinese). 唐波, 严超, 赵志龙, 等. 铸造技术, 2005, 27(4), 306. 20 Lyu Y N, Xu G M, Ding R, et al. Light Alloy Fabrication Technology, 2018, 46(1), 9(in Chinese). 吕野楠, 许光明, 丁韧, 等. 轻合金加工技术, 2018, 46(1), 9. 21 He S X, Wang J, Sun B D, et al. The Chinese Journal of Nonferrous Metals, 2002, 12(3), 426 (in Chinese). 何树先, 王俊, 孙宝德, 等. 中国有色金属学报, 2002, 12(3), 426. 22 Fabrègue D, Mouawad B, Hutchinson C R. Scripta Materialia, 2014, 92, 3. 23 Zhou Y, Xiao S, Guo J. Materials Letters, 2004, 58(12), 1948. 24 Zhu R F, Jiang Y B, Guan L, et al. Journal of Alloys and Compounds, 2016, 658, 548. 25 Wang Z Q, Song Y L, Hua L, et al. Heat Treatment of Metals, 2020, 45(12), 29(in Chinese). 王中奇, 宋燕利, 华林, 等. 金属热处理, 2020, 45(12), 29. 26 Wang L, Liu J, Yang Y, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(5), 931(in Chinese). 王琳, 刘剑, 杨屹, 等. 中国有色金属学报, 2018, 28(5), 931. 27 Chen Z, Li B, Huang Q Y, et al. Materials Science and Engineering A, 2020, 796, 140016. 28 Jeong H J, Kim M J, Park J W, et al. Materials Science and Engineering A, 2017, 684, 668. 29 Hao J, Qin S, Yan L, et al. Journal of Alloys and Compounds, 2021, 873, 159854. 30 Xiao H, Jiang S, Zhang K, et al. Journal of Alloys and Compounds, 2020, 814, 152257. 31 Xie L C, Liu C, Hua L. Materials Science and Technology, 2020, 28(3), 116 (in Chinese). 谢乐春, 刘畅, 华林. 材料科学与工艺, 2020, 28(3), 116. 32 Chen Z X, Ding H S, Chen R R, et al. Acta Metallurgica Sinica, 2019, 55(5), 611(in Chinese). 陈占兴, 丁宏升, 陈瑞润, 等. 金属学报, 2019, 55(5), 611. 33 Wu C, Zhao Y, Xu X, et al. Scripta Materialia, 2019, 165, 6. 34 Kumar A, Paul S K. Materialia, 2020, 14, 100906. 35 Zhou Y, Qin R, Xiao S, et al. Journal of Materials Research, 2011, 15(5), 1056. 36 Deng D W, Yu T, Zhang L, et al. Journal of Mechanical Engineering, 2017, 53(20), 38(in Chinese). 邓德伟, 于涛, 张林, 等. 机械工程学报, 2017, 53(20), 38. 37 Yu T, Deng D, Wang G, et al. Journal of Cleaner Production, 2016, 113, 989. 38 Ma R, Xiang S, Zhang X. International Journal of Hydrogen Energy, 2020, 45(33), 16909. 39 Andre D, Burlet T, Koerkemeyer F, et al. Materials & Design, 2019, 183, 108153. 40 Roh J H, Seo J J, Hong S T, et al. International Journal of Plasticity, 2014, 58, 84. 41 Kim M J, Yoon S, Park S, et al. Applied Materials Today, 2020, 21, 100874. 42 Babutskyi A, Mohin M, Chrysanthou A, et al. Materials Science and Engineering A, 2020, 772, 138679. 43 Zheng Y S, Tang G Y, Kuang J, et al. Journal of Alloys and Compounds, 2014, 615, 849. 44 Wang Y T, Zhao Y G, Xu X F, et al. Materials Science and Engineering A, 2018, 735, 154. 45 An J L, Wang L, Song X, et al. Materials Science and Engineering A, 2018, 724, 439. 46 Song X D, Wang F, Qian D S, et al. Materials Science and Engineering A, 2020, 780, 139171. 47 Hosoi A, Nagahama T, Ju Y. Materials Science and Engineering A, 2012, 533, 38. 48 Jung J, Ju Y, Morita Y, et al. International Journal of Fatigue, 2017, 103, 419. 49 Li X F, Jia G P, Jiang J, et al. Rare Metal Materials and Engineering, 2019, 48(8), 2655(in Chinese). 李细锋, 贾国朋, 姜军, 等. 稀有金属材料与工程, 2019, 48(8), 2655. 50 Li W Y, Wu D, Hu K W, et al. Surface and Coatings Technology, 2021, 409, 126887. 51 Fu Y M, Zheng L J, He D C, et al. Transactions of the China Welding Institution, 2008, 29(5), 5(in Chinese). 付宇明, 郑丽娟, 何大川, 等. 焊接学报, 2008, 29(5), 5. 52 Fu Y M, Du W L, Li T, et al. Journal of Plasticity Engineering, 2017, 24(4), 77(in Chinese). 付宇明, 杜文连, 李田, 等. 塑性工程学报, 2017, 24(4), 77. 53 Fu Y M, Chai X, Zheng L J, et al. Journal of Mechanical Engineering, 2012, 48(14), 58(in Chinese). 付宇明, 柴璇, 郑丽娟, 等. 机械工程学报, 2012, 48(14), 58. 54 Zheng L J, Qiao L J, Fu Y M, et al. Journal of Experimental Mechanics, 2003, 18(3), 393(in Chinese). 郑丽娟, 乔利杰, 付宇明, 等. 实验力学, 2003, 18(3), 393. 55 Fu Y M, Zhao H Y, Du W L, et al. Transactions of the China Welding Institution, 2017, 38(4), 31(in Chinese). 付宇明, 赵华洋, 杜文连, 等. 焊接学报, 2017, 38(4), 31. 56 Choi J S, La M, Kim D, et al. Journal of Materials Research and Technology, 2021, 12, 818. 57 Qin S, Yan L, Zhang X. Journal of Alloys and Compounds, 2021, 862, 158508.