Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21030039-9    https://doi.org/10.11896/cldb.21030039
  金属与金属基复合材料 |
电脉冲处理对金属材料组织、力学性能影响的研究进展
郝思洁, 褚强*, 李文亚, 杨夏炜, 邹阳帆
西北工业大学,陕西省摩擦焊接工程技术重点实验室,西安 710072
Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Metallic Materials:a Review
HAO Sijie, CHU Qiang*, LI Wenya, YANG Xiawei, ZOU Yangfan
Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 53251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多能量场辅助材料加工成形是先进制造技术发展的重要方向,其中电脉冲处理(EPT)是一种利用脉冲电流实现材料微观组织调控与力学性能改善的新型处理技术,在辅助金属材料制备和加工等领域有着广阔的应用前景。
电脉冲处理具有能量利用率高、作用时间短等优点,在提高材料塑性、促进再结晶和相变等方面具有传统热处理无法比拟的优势。近年来,金属材料组织、力学性能对电脉冲处理的响应行为受到国内外学者的广泛关注。
当脉冲电流加载于金属材料时,电场作用下的漂移电子与材料内部组织会发生相互作用,产生焦耳热效应、电迁移效应等电致塑性效应。因此,电脉冲处理能够增强原子扩散、促进位错运动,提高材料塑性变形能力。同时,脉冲电流能够显著促进晶粒细化、固态相变与织构弱化,从而使材料获得优异的综合力学性能。此外,电脉冲处理还可以实现材料内部孔洞和微裂纹的修复,有效抑制裂纹的扩展,从而提高材料的断裂韧性和延长材料的疲劳寿命。
本文基于现有研究现状,从晶粒细化、固态相变、裂纹修复等方面,总结分析了电脉冲处理对金属材料微观组织和力学性能的影响规律与作用机制,同时,简要介绍了电脉冲处理改善焊接接头成形特征和性能的相关研究,最后对电脉冲处理技术后续研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝思洁
褚强
李文亚
杨夏炜
邹阳帆
关键词:  电脉冲处理  微观组织  力学性能  电致塑性    
Abstract: Multi-energy field assisted processing is an important direction for the development of advanced manufacturing technology. Electropulsing treatment (EPT) is an innovative technology, which has been used to improve the microstructure and mechanical properties of metallic materials by applying electric pulse current. The EPT has broad promising applications in the manufacturing industry.
Due to the advantages of energy saving and high efficiency that can quickly heat up materials, EPT has preponderance over conventional heat treatment in terms of improving material plasticity, promoting recrystallization and phase transformation. The response of microstructure and mechanical properties of metal materials to EPT has attracted wide attention.
The coupling effects, including joule heating effect, electromigration effect and other electroplastic effects, could enhance the atomic diffusion and dislocation migration to improve the forming ability. In addition, pulse current can significantly promote grain refinement, solid-state phase transition, and texture weakening, so as to obtain excellent comprehensive mechanical properties. In addition, EPT can repair internal porosities and cracks of the material to effectively inhibit the crack propagation and improve the fracture behavior.
Based on the existing research, the effect of EPT on the microstructure and mechanical properties of materials has been summarized and the mechanism is preliminarily analyzed from the aspects of grain refinement, solid-state phase transition, and crack repair. Moreover, the related researches on the formation characteristics and performance of welded joints after EPT are also included in the paper. Finally, the follow-up research on EPT is discussed.
Key words:  electropulsing treatment    microstructure    mechanical property    electroplasticity
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TG402  
基金资助: 陕西省自然科学基金(2021JQ-102);国家自然科学基金(51875471)
通讯作者:  * 褚强,西北工业大学材料学院博士后。2019年6月在西北工业大学材料加工工程专业取得博士学位。主要从事铝合金搅拌摩擦点焊组织分析与数值模拟研究。已发表学术期刊论文10余篇,包括J. Mater. Sci. Technol.、J. Mater. Process. Tech.、Mater. Charact.、J. Mater. Res. Technol.、Sci. Technol. Weld. Joi.、J. Manuf. Process等。目前,主持国家自然科学基金1项、省部级项目1项。cq@nwpu.edu.cn   
作者简介:  郝思洁,2019年7月毕业于江苏科技大学,获得学士学位。现为西北工业大学材料学院硕士研究生。目前主要研究领域为铝合金无针搅拌摩擦点焊。
引用本文:    
郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
HAO Sijie, CHU Qiang, LI Wenya, YANG Xiawei, ZOU Yangfan. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Metallic Materials:a Review. Materials Reports, 2023, 37(4): 21030039-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030039  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21030039
1 Troitskii O A, Likhtman V I. Soviet Physics Doklady, 1963,8, 91.
2 Okazaki K, Kagawa M, Conrad H. Materials Science and Engineering, 1980, 45(2), 109.
3 Sheng Y, Hua Y, Wang X, et al. Materials, 2018, 11(2), 185.
4 Zhang R, Li X, Kuang J, et al. Materials Science and Technology, 2017, 33(12), 1421.
5 Ding J H, Li H, Bian T J, et al. Acta Aeronautica et Astronautica Sinica, 2018, 39(1), 20(in Chinese).
丁俊豪, 李恒, 边天军, 等. 航空学报, 2018, 39(1), 20.
6 Kang K J, Li D Y, Wang A, et al. Results in Physics, 2020, 16, 103016.
7 Ye Y, Kure C S Z, Sun Z, et al. Materials & Design, 2018, 149, 214.
8 Yang C L, Yang H J, Zhang Z J, et al. Scripta Materialia, 2018, 147, 88.
9 Wu W C, Wang Y J, Sun B L, et al. Hot Working Technology, 2014, 43(2), 82 (in Chinese).
武伟超, 王永军, 孙宝龙, 等. 热加工工艺, 2014, 43(2), 82.
10 Zhang J T. Research on post weld electropulsing treatment of friction stir welding joints of 2024 aluminum alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019 (in Chinese).
章锦涛. 2024铝合金搅拌摩擦焊接头焊后电脉冲处理工艺研究. 硕士学位论文, 南京航空航天大学, 2019.
11 Zhang H, Zhang X. Journal of Materials Science & Technology, 2020, 36, 149.
12 Molotskii M I. Materials Science and Engineering A, 2000, 287(2), 248.
13 Zhao S T, Zhang R P, Chong Y, et al. Nature Materials, 2020, 20(4), 468.
14 Zhu Y H, To S, Lee W B, et al. Materials Science and Engineering A, 2009, 501(1), 125.
15 Krishnaswamy H, Kim M J, Hong S T, et al. Materials & Design, 2017, 124, 131.
16 Xiang S Q, Zhang X F. Materials Science and Engineering A, 2019, 761, 138026.
17 Liu J Y, Zhang K F. Materials Science and Technology, 2016, 32(6), 540.
18 Barnak J P, Sprecher A F, Conrad H. Scripta Metallurgica et Materialia, 1995, 32(6), 879.
19 Tang B, Yan C, Zhao Z L, et al. Foundry Technology, 2005, 27(4), 306(in Chinese).
唐波, 严超, 赵志龙, 等. 铸造技术, 2005, 27(4), 306.
20 Lyu Y N, Xu G M, Ding R, et al. Light Alloy Fabrication Technology, 2018, 46(1), 9(in Chinese).
吕野楠, 许光明, 丁韧, 等. 轻合金加工技术, 2018, 46(1), 9.
21 He S X, Wang J, Sun B D, et al. The Chinese Journal of Nonferrous Metals, 2002, 12(3), 426 (in Chinese).
何树先, 王俊, 孙宝德, 等. 中国有色金属学报, 2002, 12(3), 426.
22 Fabrègue D, Mouawad B, Hutchinson C R. Scripta Materialia, 2014, 92, 3.
23 Zhou Y, Xiao S, Guo J. Materials Letters, 2004, 58(12), 1948.
24 Zhu R F, Jiang Y B, Guan L, et al. Journal of Alloys and Compounds, 2016, 658, 548.
25 Wang Z Q, Song Y L, Hua L, et al. Heat Treatment of Metals, 2020, 45(12), 29(in Chinese).
王中奇, 宋燕利, 华林, 等. 金属热处理, 2020, 45(12), 29.
26 Wang L, Liu J, Yang Y, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(5), 931(in Chinese).
王琳, 刘剑, 杨屹, 等. 中国有色金属学报, 2018, 28(5), 931.
27 Chen Z, Li B, Huang Q Y, et al. Materials Science and Engineering A, 2020, 796, 140016.
28 Jeong H J, Kim M J, Park J W, et al. Materials Science and Engineering A, 2017, 684, 668.
29 Hao J, Qin S, Yan L, et al. Journal of Alloys and Compounds, 2021, 873, 159854.
30 Xiao H, Jiang S, Zhang K, et al. Journal of Alloys and Compounds, 2020, 814, 152257.
31 Xie L C, Liu C, Hua L. Materials Science and Technology, 2020, 28(3), 116 (in Chinese).
谢乐春, 刘畅, 华林. 材料科学与工艺, 2020, 28(3), 116.
32 Chen Z X, Ding H S, Chen R R, et al. Acta Metallurgica Sinica, 2019, 55(5), 611(in Chinese).
陈占兴, 丁宏升, 陈瑞润, 等. 金属学报, 2019, 55(5), 611.
33 Wu C, Zhao Y, Xu X, et al. Scripta Materialia, 2019, 165, 6.
34 Kumar A, Paul S K. Materialia, 2020, 14, 100906.
35 Zhou Y, Qin R, Xiao S, et al. Journal of Materials Research, 2011, 15(5), 1056.
36 Deng D W, Yu T, Zhang L, et al. Journal of Mechanical Engineering, 2017, 53(20), 38(in Chinese).
邓德伟, 于涛, 张林, 等. 机械工程学报, 2017, 53(20), 38.
37 Yu T, Deng D, Wang G, et al. Journal of Cleaner Production, 2016, 113, 989.
38 Ma R, Xiang S, Zhang X. International Journal of Hydrogen Energy, 2020, 45(33), 16909.
39 Andre D, Burlet T, Koerkemeyer F, et al. Materials & Design, 2019, 183, 108153.
40 Roh J H, Seo J J, Hong S T, et al. International Journal of Plasticity, 2014, 58, 84.
41 Kim M J, Yoon S, Park S, et al. Applied Materials Today, 2020, 21, 100874.
42 Babutskyi A, Mohin M, Chrysanthou A, et al. Materials Science and Engineering A, 2020, 772, 138679.
43 Zheng Y S, Tang G Y, Kuang J, et al. Journal of Alloys and Compounds, 2014, 615, 849.
44 Wang Y T, Zhao Y G, Xu X F, et al. Materials Science and Engineering A, 2018, 735, 154.
45 An J L, Wang L, Song X, et al. Materials Science and Engineering A, 2018, 724, 439.
46 Song X D, Wang F, Qian D S, et al. Materials Science and Engineering A, 2020, 780, 139171.
47 Hosoi A, Nagahama T, Ju Y. Materials Science and Engineering A, 2012, 533, 38.
48 Jung J, Ju Y, Morita Y, et al. International Journal of Fatigue, 2017, 103, 419.
49 Li X F, Jia G P, Jiang J, et al. Rare Metal Materials and Engineering, 2019, 48(8), 2655(in Chinese).
李细锋, 贾国朋, 姜军, 等. 稀有金属材料与工程, 2019, 48(8), 2655.
50 Li W Y, Wu D, Hu K W, et al. Surface and Coatings Technology, 2021, 409, 126887.
51 Fu Y M, Zheng L J, He D C, et al. Transactions of the China Welding Institution, 2008, 29(5), 5(in Chinese).
付宇明, 郑丽娟, 何大川, 等. 焊接学报, 2008, 29(5), 5.
52 Fu Y M, Du W L, Li T, et al. Journal of Plasticity Engineering, 2017, 24(4), 77(in Chinese).
付宇明, 杜文连, 李田, 等. 塑性工程学报, 2017, 24(4), 77.
53 Fu Y M, Chai X, Zheng L J, et al. Journal of Mechanical Engineering, 2012, 48(14), 58(in Chinese).
付宇明, 柴璇, 郑丽娟, 等. 机械工程学报, 2012, 48(14), 58.
54 Zheng L J, Qiao L J, Fu Y M, et al. Journal of Experimental Mechanics, 2003, 18(3), 393(in Chinese).
郑丽娟, 乔利杰, 付宇明, 等. 实验力学, 2003, 18(3), 393.
55 Fu Y M, Zhao H Y, Du W L, et al. Transactions of the China Welding Institution, 2017, 38(4), 31(in Chinese).
付宇明, 赵华洋, 杜文连, 等. 焊接学报, 2017, 38(4), 31.
56 Choi J S, La M, Kim D, et al. Journal of Materials Research and Technology, 2021, 12, 818.
57 Qin S, Yan L, Zhang X. Journal of Alloys and Compounds, 2021, 862, 158508.
[1] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[2] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[3] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[4] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[5] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[6] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[7] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[8] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[9] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[10] 闫丹丹, 单忠德, 臧勇. 多材质混合砂型性能及其对A356铝合金凝固组织的影响研究[J]. 材料导报, 2023, 37(1): 21080212-5.
[11] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[12] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[13] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[14] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[15] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed