Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080212-5    https://doi.org/10.11896/cldb.21080212
  金属与金属基复合材料 |
多材质混合砂型性能及其对A356铝合金凝固组织的影响研究
闫丹丹1,2, 单忠德1,3,*, 臧勇2
1 中国机械科学研究总院集团有限公司,北京 100044
2 北京科技大学机械工程学院,北京 100083
3 南京航空航天大学机电学院,南京 210016
Study on Properties of Multi-material Mixed Sand Mold and Its Effect on Solidification Microstructure of A356 Aluminum Alloy
YAN Dandan1,2, SHAN Zhongde1,3,*, ZANG Yong2
1 China Academy of Machinery Science and Technology Group Co., Ltd., Beijing 100044, China
2 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 15111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多材质混合铸型能提高砂型铸造性能,改善其热物性参数,降低铸造成本,满足高端复杂铸件的高性能铸造需求,因此系统地开展多材质砂型铸造性能和铸件微观组织变化规律的研究具有重要意义。通过将石英砂颗粒分别与铬铁矿砂颗粒、锆英砂颗粒进行不同比例的混合造型,得到各比例下多材质砂型的性能变化规律,优选出适用于复杂铸件铸造性能和热物性能兼备的型砂配方,实现砂型铸造性能可控、热物性可控、价格可控优势。同时研究混合砂型对A356铝合金铸件二次枝晶臂间距(SDAS)的影响规律,结果表明:经过50%石英砂+50%锆英砂混合的多材质砂型的SDAS比纯石英砂砂型铸件缩短了23.64%,经过50%石英砂+50%铬铁矿砂混合的多材质砂型的SDAS比纯石英砂砂型铸件缩短了13.16%。因此,混合一定比例的锆英砂和铬铁矿砂颗粒可有效改善砂型的铸造性能和铸件的微观组织,可实现高端复杂铸件的高质量制造。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫丹丹
单忠德
臧勇
关键词:  多材质砂型  型砂配方  铸造性能  微观组织    
Abstract: Multi-material mixed casting can improve the performance of sand casting, improve the thermal and physical parameters, reduce the casting cost, and meet the demand of high performance casting of high-end complex castings. Therefore, the study on the performance of multi-material sand casting and the change law of the microstructure of castings were carried out systematically. By mixing the silica sand, zircon sand and chromite sand particles in different proportions respectively, getting the change rules of the performance of multi-material sand mold in various proportions, choosing the sand formulation which is suitable for complex castings with both casting properties, thermal properties and price. At the same time, in this work, the influence law of mixed sand mold on the secondary dendrite arm spacing of A356 aluminum alloy casting was stu-died. The results show that the secondary dendrite arm spacing (SDAS) of the multi-material sand mold mixed with 50% silica sand and 50% zircon sand was reduced by 23.64% compared with the pure silica sand mold castings, and the secondary dendrite arm spacing of the multi-material sand mold mixed with 50% silica sand and 50% chromite sand was reduced by 13.16% compared with the silica sand mold castings. Therefore, by mixing a certain proportion of zircon sand and chromite sand particles can effectively improve the casting properties of sand mold and the microstructure of castings, and can achieve high quality manufacturing of high-end complex castings.
Key words:  multi-material sand    sand formulation    casting property    microstructure
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG242.7  
基金资助: 国家杰出青年科学基金(51525503);国家重点研发计划(2021YFB3401200);机械科学研究总院先进成形技术与装备国家重点实验室开放基金(SKL2020008)
通讯作者:  * 单忠德,中国工程院院士,南京航空航天大学校长、研究员、博士研究生导师。1993年7月西安理工大学铸造专业本科毕业,1996年5月西安理工大学铸造专业硕士毕业,2002年7月清华大学大学材料加工工程专业博士毕业。主要从事数字化机械装备与先进成形技术方面的研究工作。发表SCI、EI收录论文90余篇,出版学术著作4部,授权发明专利90余项,其中美、日、欧等国际发明32项。shanzd@nuaa.edu.cn   
作者简介:  闫丹丹,2015年6月、2018年3月分别于燕京理工学院和辽宁工业大学获得工学学士学位和硕士学位。现为北京科技大学与机械工程学院博士研究生,在单忠德院士的指导下进行研究。目前主要研究领域为先进制造技术与装备领域的研究。
引用本文:    
闫丹丹, 单忠德, 臧勇. 多材质混合砂型性能及其对A356铝合金凝固组织的影响研究[J]. 材料导报, 2023, 37(1): 21080212-5.
YAN Dandan, SHAN Zhongde, ZANG Yong. Study on Properties of Multi-material Mixed Sand Mold and Its Effect on Solidification Microstructure of A356 Aluminum Alloy. Materials Reports, 2023, 37(1): 21080212-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080212  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080212
1 Shan Z D. Patternless casting, China Machine Press, China, 2017, pp. 1(in Chinese).
单忠德. 无模铸造, 机械工业出版社, 2017, pp. 1.
2 Han W, Zhang H K. Foundry, 2019, 68(9), 1009(in Chinese).
韩文, 张宏凯. 铸造, 2019, 68(9), 1009.
3 Zhao L Y, Jiang D M. In:2018 Chongqing Foundry Annual Conference. Chongqing, 2018, pp. 280.
4 Qiu Z J, Qin X Z, Qin X H, et al. Inorganic Chemicals Industry, 2020, 52(5), 57(in Chinese).
邱占疆, 秦学政, 秦学红, 等. 无机盐工业, 2020, 52(5), 57.
5 Bai L. Science and Technology Innovation and Application, 2016(1), 78(in Chinese).
白雷. 科技创新与应用, 2016(1), 78.
6 Cao C, Jiao F J, Wang Z. Tractor & Farm Transporter, 2016, 43(2), 51(in Chinese).
曹晨, 焦凤菊, 王政. 拖拉机与农用运输车, 2016, 43(2), 51.
7 Si C. Study on the preparation and molding process of coated sand for laser 3D printing. Master’s Thesis, North University of China, China, 2018(in Chinese).
司晨. 激光3D打印用覆膜砂制备及成型工艺研究. 硕士学位论文, 中北大学, 2018.
8 Li L, Zhu S F, Gao N, et al. In:11th Annual Meeting of Casting Quality Control and Testing Technology Committee and the 10th Annual Meeting of Tianjin Casting Science and Technology. Tianjin, 2016, pp. 344.
9 Shan Z D, Guo Z, Du D, et al. Frontiers of Mechanical Engineering, 2020, 15, 328.
10 Liu L M, Shan Z D, Liu F, et al. Foundry, 2018, 67(11), 960(in Chinese).
刘丽敏, 单忠德, 刘丰, 等. 铸造, 2018, 67(11), 960.
11 Liu L M, Shan Z D, Liu F, et al. China Foundry, 2018, 15(5), 343.
12 Liu L M. Study on Mechanism of adaption composite mold of complex iron casting without pattern. Master’s Thesis, China Academy of Machinery Science & Technology, China, 2017(in Chinese).
刘丽敏. 复杂铸铁件无模化自适应复合铸型机理研究. 硕士学位论文, 机械科学研究总院, 2017.
13 Liu W D, Cao W. Foundry, 2012, 61(4), 422(in Chinese).
刘卫东, 曹文. 铸造, 2012, 61(4), 422.
14 Xing Z G, Qi Z X, Chang L B, et al. Foundry Technology, 2017, 38(1), 30(in Chinese).
邢振国, 齐自新, 常连波, 等. 铸造技术, 2017, 38(1), 30
15 Wang X. Research on modification of furan no-bake foundry binds. Master’s Thesis, Shandong University of Science and Technology, China, 2006(in Chinese).
王旭. 铸造用自硬呋喃树脂粘结剂的改性研究. 硕士学位论文, 山东科技大学, 2006.
16 Ma J, Zhang J C. Metal Working(Hot Working), 2017(3), 55(in Chinese).
马俊, 张均城. 金属加工(热加工), 2017(3), 55.
17 Li R D, Mi G F. Foundry technology, China Machine Press, China, 2013, pp. 5(in Chinese).
李荣德, 米国发. 铸造工艺学, 机械工业出版社, 2013, pp. 5.
18 Zhu L. Study on decomposion process of zircon sand with mixed alkali. Master’s Thesis, General Research Institute for Nonferrous Metals, China, 2012(in Chinese).
朱露. 混合碱分解锆英砂工艺研究. 硕士学位论文, 北京有色金属研究院, 2012.
19 Fu L W. Scientific and Technological Innovation, 2016(15), 65(in Chinese).
付立伟. 科技创新, 2016(15), 65.
20 Wang M, Zhang X L, Yu G K, et al. Foundry, 2020, 69(11), 1215(in Chinese).
汪敏, 张旭亮, 余国康, 等. 铸造, 2020, 69(11), 1215.
21 Yu H X. Research on novel synthesis technology of curing agents for foundry No-bake Furan resin. Master’s Thesis, Huazhong University of Science and Technology, China, 2010(in Chinese).
虞华祥. 铸造用自硬呋喃树脂固化剂的合成工艺研究. 硕士学位论文, 华中科技大学, 2010.
22 Zhou L J, Ma W. Foundry, 2019, 68(1), 49(in Chinese).
周利军, 马文. 铸造, 2019, 68(1), 49.
23 Kang L W, Wang M, Zou Y F. Foundry, 2020, 69(3), 260(in Chinese).
康立武, 王敏, 邹燕飞. 铸造, 2020, 69(3), 260.
24 Zhan Q Q. Study on Furan resin sand for 3D sand printing. Master’s Thesis, South China University of Technology, China, 2020(in Chinese).
詹泉泉. 用于砂型3D打印的呋喃树脂砂研究. 硕士学位论文, 华南理工大学, 2020.
25 Tong L L, Zhou J X, Yin Y J, et al. Special Casting & Nonferrous Alloys, 2020, 40(2), 140(in Chinese).
佟乐乐, 周建新, 殷亚军, 等. 特种铸造及有色合金, 2020, 40(2), 140(in Chinese).
26 Bai Y H, Li H. In: 2015 China Foundry Activity Week. Hunan, 2015, pp. 4.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[9] 杨凯欣, 孙文磊, 肖奇, 邢学峰, 陈子豪. 基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 21080157-9.
[10] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[11] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[12] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[13] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[14] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[15] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed