Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20040221-6    https://doi.org/10.11896/cldb.20040221
  金属与金属基复合材料 |
激光熔化沉积成形过程数值模拟研究现状
崔朝兴1,2, 董世运2, 胡效东1, 闫世兴2, 姜浩涌1
1 山东科技大学机械电子工程学院,山东 青岛 266590
2 陆军装甲兵学院装备再制造技术国防重点实验室,北京 100072
Research Status of Numerical Simulation of Laser Melting Deposition
CUI Zhaoxing1,2, DONG Shiyun2, HU Xiaodong1, YAN Shixing2, JIANG Haoyong1
1 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 3758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光熔化沉积(Laser melting deposition,LMD)技术具有效率高、成本低、成形件性能优异等优点,成为零件修复和大尺寸构件制造的有效方法。然而,金属LMD成形是金属粉末、激光束和基体三者相互作用的一个多因素耦合过程,涉及流动熔池、快速非平衡凝固、固态相变以及复杂的温度和热应力演变。预测熔池流动情况、凝固规律以及温度应力的演变规律,对于成形试样的气孔、裂纹等缺陷控制,微观组织、力学性能和应力变形调控具有重要意义。
数值模拟是一种经济、快捷的工具,对于LMD成形过程的粉末流动预测、熔池变化预测、组织预测、温度观测以及冷却后的残余应力和变形预测具有重要意义。近几年,LMD数值模拟研究已经涉及以上几个方面,但研究深度各不相同。针对温度场的研究,主要集中于建立不同的热源模型,探讨沉积过程的温度演变及工艺方案的影响规律。针对应力场的研究,以探索工艺方案的影响规律和应力消除方法为主。研究流场则以熔池流动和粉末流动为主。微观组织模拟考虑熔池流动对宏观温度场及熔池形状的影响,采用定向凝固的生长条件,可以确定枝晶一次间距等凝固信息。
本文主要从温度场、应力场、流场、微观组织等几个方面总结了金属激光熔化沉积数值模拟的研究现状,并提出了其存在的问题和预发展的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔朝兴
董世运
胡效东
闫世兴
姜浩涌
关键词:  激光熔化沉积技术  温度场  应力场  流场  微观组织  数值模拟    
Abstract: Laser melting deposition(LMD) technology has become an effective method for repairing parts and fabricating large size components due to its high efficiency, low cost and excellent parts performance. However, metal LMD forming is a multi-factor coupling process of the interaction of metal powder, laser beam and substrate, involving flow molten pool, rapid non-equilibrium solidification, solid phase transformation, and complex temperature and thermal stress evolution. So predicting the molten pool flow, solidification law and temperature stress evolution law is of great significance for the control of defects such as pores and cracks in shaped samples, and the microstructure, mechanical properties and stress and deformation control.
Numerical simulation is an economical and fast tool, which is of great significance for prediction of powder flow, molten pool change, microstructure, temperature observation, and residual stress and deformation after cooling in the LMD forming process. In recent years, the LMD numerical simulation research has involved the above aspects, but the research depth is different. Aiming at the study of the temperature field, diffe-rent pyrogen models were established to discuss the temperature evolution of the deposition process and the influence of the process plan. Aiming at the research of stress field, the influence law of process plan and stress relief method are the main directions. The flow field research is dominated by molten pool flow and powder flow. The microstructure simulation considers the influence of the flow of the molten pool on the macroscopic temperature field and the shape of the molten pool. The growth conditions of directional solidification can be used to determine the solidification information such as the primary spacing of dendrites.
This paper summarizes the research status of numerical simulation of metal laser melting deposition from the aspects of temperature field, stress field, flow field, microstructure, etc., and puts forward the existing problems and the direction of pre-development.
Key words:  laser melting deposition technology    temperature field    stress field    flow field    microstructure    numerical simulation
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG174  
基金资助: 国家重点研发计划(2016YFB1100205;2017YFB1105002);国家自然科学基金(51705532)
通讯作者:  445279752@qq.com;huxdd@163.com20040221-1   
作者简介:  崔朝兴,硕士研究生,主要从事焊接、激光增材制造热力学数值模拟方面的研究。董世运,博士,研究员,博士研究生导师,主要从事激光增材制造与再制造及其质量无损检测评价方面的研究。胡效东,教授,工学博士,硕士研究生导师,主要研究方向:化工设备先进设计方法。
引用本文:    
崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
CUI Zhaoxing, DONG Shiyun, HU Xiaodong, YAN Shixing, JIANG Haoyong. Research Status of Numerical Simulation of Laser Melting Deposition. Materials Reports, 2022, 36(2): 20040221-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040221  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20040221
1 He B B, Wu W H, Zhang L, et al. Materials Reports, 2017, 31(S2), 465(in Chinese).
何贝贝, 吴文恒, 张亮, 等. 材料导报, 2017, 31(S2), 465.
2 Dong S Y, Yan S X, Feng X Y, et al. Laser & Optoelectronics Progress, 2018, 55(1), 76 (in Chinese).
董世运, 闫世兴, 冯祥奕, 等.激光与光电子学进展, 2018, 55(1), 76.
3 Chen Y, Chen H, Jiang Y S, et al. Journal of Materials Engineering, 2019, 47(11), 10 (in Chinese).
陈勇, 陈辉, 姜亦帅, 等. 材料工程, 2019, 47(11), 10.
4 Peng Q, Dong S Y, Yan S X, et al. Materials Reports A:Review Papers, 2018, 32(8), 2666 (in Chinese).
彭谦, 董世运, 闫世兴, 等. 材料导报:综述篇 , 2018, 32(8), 2666.
5 Dang Y X, Qi W J, Lu L L. Hot Working Technology, 2016, 45(6), 23 (in Chinese).
党元晓, 祁文军, 芦丽丽. 热加工工艺, 2016, 45(6), 23.
6 Gharbi M, Peyre P, Gorny C, et al. Journal of Materials Processing Technology, 2013, 213(5), 791.
7 Wei L, Lin X, Wang M, et al. Aeronautical Manufacturing Technology, 2017, 60(13), 16(in Chinese).
魏雷, 林鑫, 王猛, 等. 航空制造技术, 2017, 60(13), 16.
8 Jiang H F, Wurikaixi A Y T, An P F. Hot Working Technology, 2019, 48(10), 10 (in Chinese).
蒋厚峰, 乌日开西·艾依提, 安鹏芳. 热加工工艺, 2019, 48(10), 10.
9 An X L, Lyu Y Z, Qin Z X, et al. Materials Reports A:Review Papers, 2018, 32(11), 3743 (in Chinese).
安晓龙, 吕云卓, 覃作祥, 等. 材料导报:综述篇, 2018, 32(11), 3743.
10 Zhu C G, Sun Y N, Yu Q. Hot Working Technology, 2012, 41(8), 132 (in Chinese).
朱晨光, 孙耀宁, 于青. 热加工工艺, 2012, 41(8), 132.
11 Amine T, Newkirk J W, Liou F. The International Journal of Advanced Manufacturing Technology, 2014, 73(9-12), 1625.
12 Yong Y W, Fu W, Deng Q L, et al. Journal of Manufacturing Processes, 2017, 28(2), 364.
13 Zhou L, Chen X, Zhu B. Materials Science Forum, 2014, 3256, 843.
14 Cai C B, Li M Y, Han B, et al. Applied Laser, 2017, 37(1), 66 (in Chinese).
蔡春波, 李美艳, 韩彬, 等. 应用激光, 2017, 37(1), 66.
15 Luo M X. Numerical simulation of thermal-mechanical behavior during laser cladding 316L stainless steel powder.Master's Thesis, Yanshan University, China, 2011 (in Chinese).
罗明贤. 316L不锈钢粉末激光熔覆工艺热-力耦合数值模拟. 硕士学位论文, 燕山大学, 2011.
16 Li L Q, Wang J D, Wu C C, et al. Chinese Journal of Lasers, 2017, 44(3), 113 (in Chinese).
李俐群, 王建东, 吴潮潮, 等. 中国激光, 2017, 44(3), 113.
17 Du C, Zhang J, Lian Y, et al. Surface Technology, 2019, 48(1), 200 (in Chinese).
杜畅, 张津, 连勇, 等. 表面技术, 2019, 48(1), 200.
18 Zhao J F, Xie D Q, Liang H X, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(1), 6 (in Chinese).
赵剑峰, 谢德巧, 梁绘昕. 南京航空航天大学学报, 2019, 51(1), 6.
19 Li D Y, Zhang J, Zhao L Z, et al. Acta Materiae Compositae Sinica, 2016, 33(10), 2270 (in Chinese).
李德英, 张坚, 赵龙志, 等. 复合材料学报, 2016, 33(10), 2270.
20 Ding C G, Cui X, Jiao J Q, et al. Materials, 2018, 11(12),2401.
21 Fang J X, Dong S Y, Xu B S, et al. Chinese Journal of Lasers, 2015, 42(5), 131 (in Chinese).
方金祥, 董世运, 徐滨士, 等. 中国激光, 2015, 42(5), 131.
22 Cottam R, Thorogood K, Lui Q, et al. Key Engineering Materials, 2012, 1933(1040), 309.
23 Sun J, Zhao J F, Xie N, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6), 805 (in Chinese).
孙杰, 赵剑峰, 谢娜, 等. 南京航空航天大学学报, 2017, 49(6), 805.
24 Devesse W, Baere D D, Guillaume P. Journal of Laser Applications, 2015, 27(S2), S29208.
25 Gan Z, Yu G, He X, et al. International Journal of Heat and Mass Transfer, 2017, 104, 28.
26 Kovaleva I, Kovalev O, Zaitsev A, et al. Physics Procedia, 2013, 41, 870.
27 Smurov I, Doubenskaia M, Zaitsev A. Surface & Coatings Technology, 2013, 220(15), 112.
28 Liu H, He X L, Yu G, et al. Science China(Physics,Mechanics & Astro-nomy), 2015, 58(10), 34.
29 Liu Z Y, Qi H. Applied Laser, 2013, 33(2), 144 (in Chinese).
刘朝阳, 齐欢. 应用激光, 2013, 33(2), 144.
30 Li Q D. Simulation of the microstructure evolution of pure metal during laser cladding using phase-field method. Master's Thesis, Hunan University, China, 2012 (in Chinese).
李钦栋. 激光熔覆纯金属微观组织的相场模拟. 硕士学位论文, 湖南大学, 2012.
31 Li D S. Grain formation model and experimental research on laser cladding metal layer. Master's Thesis, Hunan University, China, 2008 (in Chinese).
李大生. 激光熔覆金属层晶粒形成模型及其试验研究. 硕士学位论文, 湖南大学, 2008.
32 Sun D J. Simulation of the microstructure evolution during laser cladding using phase-field method.Master's Thesis, Hunan University, China, 2013 (in Chinese).
孙道金. 激光熔覆微观组织形成过程相场法模拟研究. 硕士学位论文, 湖南大学, 2013.
[1] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[2] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[3] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[6] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[9] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[10] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[11] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[12] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[13] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[14] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[15] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed