COMPUTATIONAL SIMULATION |
|
|
|
|
|
Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2 |
ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping
|
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 |
|
|
Abstract Effects of Ge, Si addition on energy and electronic structure of ZrO2 and Zr(Fe,Cr)2 related to the corrosion of zirconium alloy were studied by First-principles calculations based on the density functional theory. The calculated heats of formation and cohesive energies show that ZrO2 tetragonal phase is not stable, cubic phase is easily formed and has the highest structural stability, thus the change occurs from tetragonal phase to cubic phase for crystal structure of oxidation, which affects the corrosion resistance of zirconium alloy. Ge, Si can reduce the forming ability and structural stability of ZrO2 cubic phase, Si can easily replace Cr atoms of Zr(Fe, Cr)2 systems, thus Fe/Cr atomic ratio of the second phase in zirconium alloy is improved. The calculations of the density of states (DOS) and Mulliken electronic populations show that hybrid resonant phenomenon and more ionic bonds are both seen between Zr and O of ZrO2, and the reason of reduced structural stability of ZrO2 cubic phase attributes to the weakened ionic bonds between Zr and O with the addition of Ge, Si. It is considered as ZrO2 and Zr(Fe,Cr)2 phase for affecting the corrosion resistance of zirconium alloy. In the case of adding Si, Si contained second phase Zr(Fe,Cr)2 is harmful to corrosion resistance of zirconium alloy, if the change of ZrO2 crystal structure is dominated, the corrosion resistance of zirconium alloy will be improved. As far as Ge is concerned, it is difficult for the formation of Ge contained second phase Zr(Fe,Cr)2, thus the influence of second phase on corrosion resistance of zirconium alloy is less than that of adding Si. If the change tendency from tetragonal phase to cubic phase has slowed down, the corrosion resistance of zirconium alloy will be improved.
|
Published:
Online: 2018-05-08
|
|
|
|
1 Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin[C]//Zirconium in the Nuclear Industry:The 12th International Symposium.Philadelphia,2000:1354. 2 Jeong Y H, Kim H G, Kim D J, et al.Influence of Nb concentration in the α matrix on the corrosion behavior of ZrxNb binary alloys[J].J Nuclear Mater,2003,72:323. 3 Anada A H, Herb B J, Nomoto K, et al.Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of Zircaloy4 cladding tube[C]//Zirconium in the Nuclear Industry: The 11th International Symposium. Philadelphia,1996:1295. 4 Cao X X, Yao M Y, Peng J C.Corrosion behavior of Zr(Fex,Cr1-x)2 alloy 400 ℃ in superheated steam[J].Acta Metall, 2011,47(7):882 (in Chinese). 曹潇潇,姚美意,彭建超. Zr(Fex,Cr1-x)2合金在400 ℃过热蒸汽中的腐蚀行为[J].金属学报,2011,47(7):882. 5 Zhang J L, Xie X F, Yao M Y, et al. Effect of Ge addition on corrosion performance of Zr-4 alloy in lithiated solution[J].Chinese J Nonferrous Metals, 2013,23(6):1542(in Chinese). 张金龙,谢兴飞,姚美意,等. Ge含量对Zr-4合金在LiOH水溶液中耐腐蚀性能的影响[J].中国有色金属学报,2013,23(6):1542. 6 Sun F T, Yao M Y, Xu L, et al. Effect of adding dilute Si on corrosion resistance of zirconium alloys[J].J Shanghai University(Natural Science), 2015,21(2):182(in Chinese). 孙凤涛,姚美意,徐龙,等. 添加微量Si对锆合金耐腐蚀性能的影响[J].上海大学学报(自然科学版),2015,21(2):182. 7 刘建章. 核结构材料[M].北京:化学工业出版社,2007:19. 8 杨文斗. 反应堆材料学[M].北京:原子能出版社,2006:260. 9 Sell H J,Siegrum T P,Friedrich G. Effect of alloying elements and impurities on in-BWRcorrosion of zirconium alloys[C]//ASTM Symposium on Zirconium in the Nuclear Industry:14th International Symposium,2006:404. 10 Kass S,Grozier J D,Shubert F L.Effects of silicon,nitrogen, oxygen on the corrosion and hydrogen absorption performance of zircaloy-2[J].Corrosion,1964,20(11):350. 11 Zhang Haixia, Li Zhongkui, Xu Bingshe, et al. The effect of α-Zr matrix microstructure on the formation of oxide film and the corrosion resistance of new zirconium alloy[J].Funct Mater, 2014,45(8):08062 (in Chinese). 章海霞,李中奎,许并社,等.α-Zr基体显微组织对新锆合金氧化膜的形成及其耐腐蚀性能的影响[J].功能材料,2014,45(8):08062. 12 Qiu R S, Lan B F, Zhai L J, et al. Review of second phase particles on zirconium alloys(Ⅱ): Zr-Sn-Nb-Fe alloys[J].Chinese J Nonferrous Metals, 2012, 22(6):1605 (in Chinese). 邱日盛,栾佰峰,柴林江,等. 锆合金第二相研究述评(Ⅱ):Zr-Sn-Nb-Fe系合金[J].中国有色金属学报,2012,22(6):1605. 13 Zhai L J, Lan B F, Zhou Y, et al. Review of second phase particles on zirconium alloys(Ⅰ): Zircaloys[J]. Chinese J Nonferrous Metals, 2012, 22(6):1594 (in Chinese). 柴林江,栾佰峰,周宇,等.锆合金第二相研究述评(Ⅰ):Zircaloys合金[J].中国有色金属学报,2012,22(6):1594. 14 Segall M D, Linan P L D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J].J Phys:Condens Matter,2002,14(11):2717. 15 Marlo M,Milman V.Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals[J].Phys Rev B, 2000,62(4):2899. 16 Vanderbilt D. Soft self-consistent pseudopotentitals in a generalized eigenvalue formalism[J].Phys Rev B, 1990,41(11):7892. 17 Hammer B, Hausen L B, Norkov J K.Improved adsorption energetics withen density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Phys Rev B,1999,59(11):7413. 18 Frascis G P,Payne M C. Finite basis set corrections to total energy pseudopotential calcaulations[J].J Phys: Condens Matter,1990,19(2):4395. 19 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976,13(12):5188. 20 Teufer G. The crystal structure of tetraonal ZrO2[J].Acta Cryst, 1962,15:1187. 21 Wang X, Wang X, Yin Q Q, et al. First-principles study of Zr-based binary oxide doped with Ru[J].Chinese J Nonferrous Metals, 2014, 24(5):1327(in Chinese). 王鑫,王欣,尹倩倩,等. Ru 掺杂Zr 基二元氧化物的第一性原理研究[J].中国有色金属学报,2014,24(5):1327. 22 Aldebert P, Traverse J P. Structure and ionic mobility of Zirconia at high temperature[J]. J Am Ceram Soc, 1985,68(1):34. 23 Song Y, Guo Z X, Yang R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation[J]. Phys Rev B, 2004,69(9):094205. 24 Liu X, Meng C G, Liu F H. Theoretical study of O2 addsorption on the (100) surface of NiTi alloy[J].Acta Metall, 2006,42(4):421(in Chinese). 刘新,孟长功,刘丰厚. O2在NiTi合金(100)表面吸附的理论研究[J].金属学报,2006,42(4):421. 25 Ye X, Manos M.The adsorption and dissociation of O2 molecular precursors on Cu: The effect of steps[J]. Surf Sci,2003,538(3):219. 26 Glassford K M, Chelikowsky J R. Electronic and structural properties of RuO2[J].Phys Rev B, 1993,47(4):1732. |
|
|
|