Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20110148-7    https://doi.org/10.11896/cldb.20110148
  高分子与聚合物基复合材料 |
层压型CFRP环带疲劳试验中接触面温度场分析
范凌云1, 高婧1, 李锦峰1, 周海俊2
1 厦门大学建筑与土木工程学院,福建 厦门 361005
2 深圳大学城市智慧交通与安全运维研究院,广东 深圳 518060
Analysis on Temperature Field at Contact Surface of Laminated CFRP Straps in Fatigue Test
FAN Lingyun1, GAO Jing1, LI Jinfeng1, ZHOU Haijun2
1 School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, Fujian, China
2 Institute of Urban Smart Transportation and Safety Maintenance, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 6109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层压型碳纤维增强复合材料(CFRP)环带索是将一条具有单向纤维的CFRP连续层带,以类似于赛道的方式分层缠绕在两个分离的销钉上的一种构件。本工作进行了层压型CFRP环带拉伸疲劳试验,得到了其工作疲劳曲线,并根据试验结果分析了加载频率和销钉材料对因摩擦而产生的温度的影响。实验结果表明,在疲劳试验过程中,销钉与环带接触面摩擦产生热量,形成了局部温度场,整体温度呈对称分布,从环带曲线段顶部到直线段逐渐减小,在直曲相交处温度变化速率最高、温度梯度最大。接触面温度随加载频率增加而升高,而销钉材料对温度的影响主要取决于材料的热传导系数和摩擦系数。基于试验结果建立了CFRP环带的温度场模型,对CFRP环带构造进行参数分析。结果表明,销钉半径和环带厚度对环带温度分布的影响大致相同,在相同曲率下,不论是改变销钉半径亦或是环带厚度,对温度梯度都基本没有影响。当曲率增大时,环带的整体温度减小,温度梯度减小。结合受力和温度的综合影响,推荐合理曲率为1.5左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范凌云
高婧
李锦峰
周海俊
关键词:  复合材料  碳纤维增强复合材料  疲劳试验  温度梯度  数值模拟  参数分析    
Abstract: The laminated CFRP strap is a continuous strap with unidirectional fibers winding in layers similar to the racing track on two separate pins. In this work, the fatigue test of CFRP straps was carried out, and the S-N curve was obtained. Based on the test results, the effects of loading rate and pin material on the straps temperature were analyzed. The results show that the overall temperature distribution of CFRP straps is symmetrical, gradually decreasing from the top of the curve to the straight part, the highest temperature occurs at the intersection between straight and curve segment. On the basis of the experiment, the temperature field model of the CFRP straps was established, and the size parameters of straps were analyzed. According to the analysis results, the influence of the pin radius and the straps thickness on the temperature distribution is similar, and therefore the curvature was used to unify the two parameters. Under the same curvature, changes in pin radius and straps thickness have no effect on temperature gradient. When the curvature increases, the overall temperature and the temperature gradient both decrease. Considering the influence of force and temperature, a reasonable curvature of about 1.5 was recommended.
Key words:  composite materials    carbon fiber reinforced composite    fatigue test    temperature gradient    numerical simulation    parameter analysis
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TB332  
基金资助: 国家自然科学基金联合基金项目(U2005216),中国中铁股份有限公司科技研究开发计划(2020-重点-11),福建省自然科学基金项 目(2020J01010)
通讯作者:  gaojing@xmu.edu.cn   
作者简介:  范凌云,2017年6月毕业于厦门大学获得学士学位,并于2018年9月于厦门大学攻读硕士学位。主要从事新型材料性能和应用研究。
高婧,厦门大学土木工程系副教授,硕士研究生导师。2009年于福州大学结构工程专业取得博士学位,2009年到厦门大学任职, 其中2013至2014年在瑞士联邦材料科技研究院访学。主要研究方向为拱桥计算理论、结构健康监测与CFRP在结构工程中的应用。
引用本文:    
范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
FAN Lingyun, GAO Jing, LI Jinfeng, ZHOU Haijun. Analysis on Temperature Field at Contact Surface of Laminated CFRP Straps in Fatigue Test. Materials Reports, 2022, 36(1): 20110148-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110148  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20110148
[1] Winistoerfer A U. Development of non-laminated advanced composite straps for civil engineering applications. Ph.D. Thesis, University of Warwick, UK, 1999.
[2] Winistrfer A, Mottram J T. Journal of Composite Materials, 2001, 35(7), 577.
[3] Meier U. Arabian Journal Forence & Engineering, 2012, 37(2), 399.
[4] Zou Zuwei. Structure and properties of composite materials, Sicence Press, China, 1999(in Chinese).
邹祖伟. 复合材料的结构与性能, 科学出版社, 1999.
[5] Stoll F, Saliba J E, Casper L E. Composite Structures,2000,49(2),191.
[6] Harper L T, Turner T A, Warrior N A, et al. Composite Part A, 2006, 37(11), 2136.
[7] Uomoto T, Mutsuyoshi H, Katsuki F, et al. Journal of Materials in Civil Engineering, 2015, 14(3), 191.
[8] Zhao Bin. Study on structural behavior of through and half-through arch bridge based on CFRP suspenders. Master's Thesis, Xiamen University, China, 2017(in Chinese).
赵斌. 基于CFRP吊杆的中下承式拱桥结构性能研究. 硕士学位论文, 厦门大学, 2017.
[9] Zheng Yuling. Mechanical performance study of pin-loaded CFRP-strap hangers. Master's Thesis, Xiamen University,China,2018(in Chinese).
郑毓玲. 铰销式CFRP环带吊杆受力性能研究. 硕士学位论文, 厦门大学, 2018.
[10] Pegoretti A, Volpe C D, Detassis M, et al. Composites Part A, 1996, 27(11), 1067.
[11] Foster S K, Bisby L A. Journal of Composites for Construction, 2008, 12(5), 553.
[12] Gao Wanyang, Hu Kexu, Lu Zhoudao. Journal of Wuhan University of Technology, 2008, 30(11), 94(in Chinese).
高皖扬, 胡克旭, 陆洲导. 武汉理工大学学报, 2008, 30(11), 94.
[13] Sumida A, Mutsuyoshi H. Journal of Advanced Concrete Technology, 2008, 6(1), 157.
[14] Zhang Kai, Wang Xiaowei, Li Jian, et al. Sichuan Building Science, 2017, 43(2), 38(in Chinese).
张凯, 王小伟, 黎健, 等. 四川建筑科学研究, 2017, 43(2), 38.
[15] Zhang X, Du L, Xu Z. Journal of Applied Polymer Science, 2013, 127(6), 4456.
[16] Youssefian S, Rahbar N. Journal of the Mechanical Behavior of Biomedi-cal Materials, 2012, 18, 1.
[17] Zhou S Q, Cheng X C, Jin Y L, et al. Journal of Applied Polymer Science, 2013, 128(5), 3043.
[18] Yang S, Qu J. Polymer, 2012, 53(21), 4806.
[19] Clancy T C, Frankland S, Hinkley J, et al. Polymer,2009,50(12),2736.
[20] Chen Ming, Long Lianchun, Chen Zhongying, et al. Materials Reports A: Review Papers, 2010, 24(7), 81(in Chinese).
陈明, 龙连春, 陈众迎,等.材料导报:综述篇, 2010, 24(7), 81.
[21] Geng G, Ma X, Geng H, et al. Chemical Research in Chinese Universities, 2018, 34(3), 451.
[22] Bisby L A. Fire behavior of fibre-reinforced polymer(FRP) reinforced or confined concrete. Ph.D. Thesis, Queen's University, Canada, 2003.
[1] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[2] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[3] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[4] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[5] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[6] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[7] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[8] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[9] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[10] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[11] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[12] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[13] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[14] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[15] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed