Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20040170-6    https://doi.org/10.11896/cldb.20040170
  金属与金属基复合材料 |
选区激光熔化制备颗粒增强金属基复合材料的研究进展
滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标
昆明理工大学材料科学与工程学院,昆明 650093
Research Progress on Preparation of Particle Reinforced Metal Matrix Composites by Selective Laser Melting
TENG Baoren,LI Zhenhua,LI Huaiyang,YANG Rui,SHEN Jibiao
School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China
下载:  全 文 ( PDF ) ( 11873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化是一种使用聚焦高能激光束熔化粉末,逐层叠加成形零件的增材制造方法。选区激光熔化可以直接制备复杂结构零件和实现近净成形,能够方便地通过粉末预混添加或原位反应实现颗粒增强金属基复合材料的控形控性,具有独特的技术优势,受到广泛关注。
本文综述了选区激光熔化制备颗粒增强金属基复合材料的研究进展,总结了主要研究结果及存在的共性问题,并展望了选区激光熔化制备颗粒增强金属基复合材料的研究方向和发展趋势。通过总结分析,指出选区激光熔化制备颗粒增强金属基复合材料时,聚焦激光作用下形成的高温微小熔池凝固时间短,远远偏离平衡状态,凝固过程复杂,增强颗粒与基体间冶金反应剧烈,容易熔化、分解和溶解并对基体特性产生影响,进而影响成形后的复合材料的宏观形貌和组织、性能。除增强体成分、颗粒形貌与尺寸、体积分数外,复合材料的性能还受激光功率、扫描速度、扫描间距、粉层厚度、成形气氛等工艺参数的影响,粉末特性与工艺参数之间的交互作用复杂。因此,考察工艺参数与粉末特性之间的交互作用关系,系统研究增强体颗粒特性与成形工艺参数对复合材料宏观形貌、致密度、缺陷、组织和性能的影响规律,是实现复合材料组织结构设计和性能调控的基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕宝仁
黎振华
李淮阳
杨睿
申继标
关键词:  选区激光熔化  颗粒增强  金属基复合材料  工艺参数    
Abstract: Selective laser melting is an additive manufacturing method which uses focused high-energy laser beam to melt powder and fabricates parts layer by layer. Selective laser melting can directly fabricate complex structural parts and realize near net shape. Selective laser melting has attracted more and more attentions due to its special advantages in control of shape and property of particle reinforced metal matrix composites by powder pre-mixing or in-situ reaction.
In this paper, research progress on preparation of particle reinforced metal matrix composites by selective laser melting is reviewed. Based on summarization of main results and problems in this field, research directions and development trends of particle reinforced metal matrix composites fabricated by selective laser melting are prospected. It is confirmed that the molten pool formed by focused laser with high temperature and short solidification time is far away from the equilibrium state, resulting in complex solidification process and violent metallurgical reaction between the reinforced particles and the matrix. The reinforced particles are easy to melt, decompose or dissolve into matrix during selective laser melting process, leading to characteristics changes of matrixes. Eventually, the microstructure and properties of the composites after forming are significantly influenced. Apart from composition, morphology, size and volume fraction of the particle reinforcements, the properties of composites are also affected by laser power, scanning speed, scanning spacing, powder layer thickness, forming atmosphere and other process parameters. Since interaction between powder properties and process parameters is complex,so it is extremely important to investigate the interaction between process parameters and powder characteristics and systematically study the influence of particle reinforcement characteristics and forming process parameters on the macro morphology, density, defects, microstructure and properties of the composites. Those studies are the basis for microstructure design and property control of composites.
Key words:  selective laser melting    particle reinforced    metal matrix composites    process parameter
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51961017);云南省基础研究重点项目(202101AS070017)
通讯作者:  lzhkust@sina.com20040170-1   
作者简介:  滕宝仁,昆明理工大学材料科学与工程学院博士研究生,研究方向为增材制造与新材料制备。黎振华,昆明理工大学教授、博士研究生导师。主要从事材料加工、增材制造与新材料的研究。
引用本文:    
滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
TENG Baoren,LI Zhenhua,LI Huaiyang,YANG Rui,SHEN Jibiao. Research Progress on Preparation of Particle Reinforced Metal Matrix Composites by Selective Laser Melting. Materials Reports, 2022, 36(2): 20040170-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040170  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20040170
1 Nie X W,Liu R. Recent Patents on Materials Science,2012,5(2),149.
2 Si C R,Zhang X J,Wang J B. Jorunal of Functional Materials,2015,46(1),01001 (in Chinese).
司朝润,张贤杰,王俊彪.功能材料,2015,46(1),01001.
3 Wang H Y,Li C,Li Z G,et al. Acta Metallurgica Sinica,2019,55(6),683(in Chinese).
王慧远,李超,李志刚,等.金属学报,2019,55(6),683.
4 Li J G,Laghari R. International Journal of Advanced Manufacturing Technology,2019,100,2929.
5 Li H L,Jia D C,Yang Z H,et al. Materials Science and Technology,2019,27(2),1(in Chinese).
李海亮,贾德昌,杨治华,等.材料科学与工艺,2019,27(2),1.
6 Yang Y Q,Chen J,Song C H,et al. Laser & Optoelectronics Progress,2018,55(1),9 (in Chinese).
杨永强,陈杰,宋长辉,等.激光与光电子学进展,2018,55(1),9.
7 Tian J,Huang Z H,Qi W J,et al. Materials Reports,2017,31(Z1),90 (in Chinese).
田杰,黄正华,戚文军,等.材料导报,2017,31(Z1),90.
8 Pavlov M,Doubenskaia M,Smurov I. Physics Procedia,2010,5,523.
9 Wang D, Yang Y Q. In: The 5th National Conference on Rapid Prototyping and Manufacturing. Xi'an, 2011,pp. 58
王迪,杨永强.第五届全国快速成形与制造学术会议.西安,2011,pp. 58.
10 Zhu Y T,Du K P,Shen J,et al. Thermal Spray Technology,2017,9(2),35 (in Chinese).
朱云天,杜开平,沈婕,等.热喷涂技术,2017,9(2),35.
11 Duan W,Zhao Z,Ji H W,et al. Materials Reports B:Research Papers,2019,33(10),1685 (in Chinese).
段伟,赵哲,吉红伟,等.材料导报:研究篇,2019,33(10),1685.
12 Yu W H,Sing S L,Chua C K,et al. Progress in Materials Science,2019,104,330.
13 Shen Q,Yu S,Niu J L,et al. Materials Reports,2019,33(Z1),278 (in Chinese).
申琦,余森,牛金龙,等.材料导报,2019,33(Z1),278.
14 Zhang S S.Preparation and properties of TiC particle reinforced 316L stainless steel composites by selective laser melting.Master's Thesis,Harbin Engineering University,China, 2019 (in Chinese).
张莎莎.TiC颗粒增强316L不锈钢复合材料选区激光熔化制备及性能研究.硕士学位论文,哈尔滨工程大学,2019.
15 Cheng L Y.Selective laser melting fabrication of stainless steel and nano hydroxyapatite biocomposites.Master's Thesis,Huazhong University of Science and Technology,China, 2014 (in Chinese).
程灵钰.SLM制备不锈钢与纳米羟基磷灰石复合材料研究.硕士学位论文,华中科技大学,2014.
16 Hu H,Zhou Y,Wen S F,et al. Chinese Journal of Lasers,2018,45(12),1202010-1 (in Chinese).
胡辉,周燕,文世峰,等.中国激光,2018,45(12),1202010-1.
17 Tan C L.Selective laser melting of maraging steel and its composite, gra-dient materials.Ph.D. Thesis,South China University of Technology,China, 2019 (in Chinese).
谭超林.选区激光熔化成型马氏体时效钢及其复合、梯度材料研究.博士学位论文,华南理工大学,2019.
18 Stašić J,Božić D. Surface & Coatings Technology,2016,307,407.
19 Aimangour B, Grzesiak D, Yang J M. Materials and Design,2016,96,150.
20 Astfalck L C,Kelly G K,Li X P,et al. Advanced Engineering Materials,2017,19(8),1600835.
21 Gu D D,Wang H Q,Chang F,et al. Physics Procedia,2014,56,108.
22 Simchi A,Godlinski D. Journal of Materials Science,2011,46(5),1446.
23 Chang F.Research on forming mechanisms and properties of multiphase reinforced aluminum matrix composites by selective laser melting.Master's Thesis,Nanjing University of Aeronautics and Astronautics,China, 2016 (in Chinese).
常斐.选区激光熔化多相增强Al基复合材料成形机理及性能研究.硕士学位论文,南京航空航天大学,2016.
24 Hu L,Liu Y Z,Tu C,et al. Materials Science and Engineering of Powder Metallurgy,2019,24(4),365 (in Chinese).
胡亮,刘允中,涂诚,等.粉末冶金材料科学与工程,2019,24(4),365.
25 Gu D D,Hagedorm Y C,Meiners W,et al. Composites Science and Technology,2011,71(13),1612.
26 Gu D D,Meng G B,Li C,et al. Scripta Materialia,2012,67(2),185.
27 Li C,Gu D D,Shen Y F,et al. The Chinese Journal of Nonferrous Metals,2011,21(7),1554 (in Chinese).
李闯,顾冬冬,沈以赴,等.中国有色金属学报,2011,21(7),1554.
28 Attar H,Bonisch M,Calin M,et al. Acta Materialia,2014,76,13.
29 Hattal A,Chauveau T,Djemai M,et al. Materials and Design,2019,180,107909.
30 Jia Q B,Gu D D. Journal of Materials Research,2014,29(17),1960.
31 Jia Q B.Selective laser melting fabrication of Nickel-based superalloys and its composites: process,microstructure and property.Master's Thesis,Nanjing University of Aeronautics and Astronautics,China, 2015 (in Chinese).
贾清波.Ni基高温合金及其复合材料选区激光熔化成形工艺、组织及性能.硕士学位论文,南京航空航天大学,2015.
32 Cao C S.Research on preparation and properties of WC/Ni coating by laser melt injection.Master's Thesis,Huazhong University of Science and Technology,China, 2016 (in Chinese).
曹聪帅.激光熔注WC/Ni基复合材料层制备工艺及组织性能研究.硕士学位论文,华中科技大学,2016.
33 Nguyen Q B,Zhu Z,Chua B W,et al. Archives of Civil & Mechanical Engineering (Elsevier Science),2018,18(4),1410.
34 Xia M J, Gu D D, Ma C L,et al. Journal of Alloys and Compounds,2019,777,693.
35 Shi Q M.Process and performance control of laser additive manufacturing of Ni-based composites based on thermal-mechanical coupled method.Master's Thesis,Nanjing University of Aeronautics and Astronautics,China, 2018 (in Chinese).
石齐民.镍基复合材料激光增材制造热-力耦合过程及性能调控.硕士学位论文,南京航空航天大学,2018.
36 Xiao W H.The study of properties and microstructure on graphene/Inconel 718 composites prepared by 3D printing.Master's Thesis,Nanchang Hangkong University,China, 2017 (in Chinese).
肖纬汗.3D打印石墨烯/Inconel718复合材料组织与性能研究.硕士学位论文,南昌航空大学,2017.
[1] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[2] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[3] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[4] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[5] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[6] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[7] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[8] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[9] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[10] 李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
[11] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[12] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[13] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[14] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[15] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed