Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1177-1182    https://doi.org/10.11896/cldb.20010025
  金属与金属基复合材料 |
Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变
唐延川1, 许举文1, 崔泽云1, 王文慧1, 张欣磊1, 唐兴昌2,3, 赵龙志1
1 华东交通大学材料科学与工程学院,南昌 330013
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 兰州理工大学材料科学与工程学院,兰州 730050
Cold Rolling Deformation Behavior and Interface Transition Layer Evolution of Cu-Be/Cu-Zn Laminated Composite
TANG Yanchuan1, XU Juwen1, CUI Zeyun1, WANG Wenhui1, ZHANG Xinlei1, TANG Xingchang2,3, ZHAO Longzhi1
1 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 16185KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高铍含量的铍铜(Cu-Be)合金时效后抗拉强度可达1 400 MPa以上,伸长率却不到5%,呈现显著的强度-塑性倒置关系,严重影响了合金服役的安全可靠性。高强Cu-Be合金塑性变形时产生的局部应变集中现象是导致其低塑性的根本原因,将层状非均质构型设计的思想运用于Cu-Be合金,构建Cu-Be/Cu-Zn层状金属基复合材料,可以有效减少该现象的产生,有望获得高强塑性的层状金属基复合材料。运用塑性变形法制备层状金属基复合材料简单易行,受到广泛关注。前人对层状金属基复合材料轧制变形规律的研究主要集中在复合材料金属组元方面,对界面过渡层变形规律研究较少。
   本工作利用真空热压复合及后续冷轧变形的方式制备了Cu-Be/Cu-Zn层状金属基复合材料,利用光学显微镜(OM)、场发射扫描电镜(FE-SEM)结合能谱仪(EDS)、显微维氏硬度计对Cu-Be/Cu-Zn层状金属基复合材料冷轧变形行为及界面过渡层的演变进行了研究。研究结果表明,Cu-Be/Cu-Zn层状金属基复合材料冷轧前金属层间界面基本呈平直状,界面结合良好且无裂纹、孔洞等缺陷。当冷轧压下率不超过50%时,Cu-Be/Cu-Zn层状金属基复合材料发生不均匀的宏观变形,Cu-Zn层在板材厚度方向的变形量明显大于Cu-Be层和界面过渡层,当冷轧压下率为35%时,界面过渡层的厚度仅减小8.3%,不均匀的塑性变形导致Cu-Be/Cu-Zn界面由平直状态变为波浪状态;当冷轧压下率超过65%时,层状金属基复合材料内部发生均匀、协调的变形,各层厚度基本按照总冷轧压下率变化。不同冷轧压下率下,显微硬度最高的均为过渡层,其次是Cu-Be层,而Cu-Zn层的显微硬度最低。这是因为在层状金属基复合材料冷轧变形过程中,界面过渡层主要起到协调变形的作用,处于显著剪切应力状态,会产生额外的背应力强化。
   本工作探讨了界面过渡层在Cu-Be/Cu-Zn层状金属基复合材料冷轧过程中的宏观变形以及强化机理,有助于进一步阐明层状金属基复合材料塑性加工变形规律并合理制定其塑性加工工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐延川
许举文
崔泽云
王文慧
张欣磊
唐兴昌
赵龙志
关键词:  Cu-Be合金  层状金属基复合材料  冷轧  界面过渡层  宏观变形  显微硬度    
Abstract: After aging treatment, the ultimate tensile strength of high strength beryllium copper alloy can reach 1 400 MPa but the elongation is less than 5%. The significant strength and ductility trade-off presented in the beryllium copper alloy seriously affects the safety and reliability during the service. The local strain concentration which leads to the low plasticity can be suppressed by applying the laminated heterogeneous configuration design to the Cu-Be alloy. It is expected to acquire material with high strength-ductility through the preparation of Cu-Be/Cu-Zn laminated metal matrix composite. The preparation of laminated metal matrix composite through plastic deformation is easy to realize, which has caused widely concern. Previous researches of laminated metal matrix composite rolling deformation mainly focused on the deformation characteristics of metal components, but few works concerned the deformation characteristics of interface transition layers during rolling.
In this work, we successfully prepared a Cu-Be/Cu-Zn laminated metal matrix composite by vacuum hot pressing and subsequent cold rolling. The cold rolling deformation behavior and interface transition layer evolution of Cu-Be/Cu-Zn laminated metal matrix composite were investigated by an optical microscope (OM), a field-emission scanning electron microscope (FE-SEM) with energy dispersion spectrum (EDS) and a Vic-kers hardness tester. The results show that the interfaces between the Cu-Be layers and Cu-Zn layers of the laminated metal matrix composite without cold rolling are of straight shape and the interface bonding is well, without cracks or voids. When the cold rolling reduction rate is less than 50%, inhomogeneous macroscopic deformation occurs in the composite. The deformation of Cu-Zn layers in the thickness direction is obviously larger than that of Cu-Be layers and transition layers. The thickness of transition layers is only reduced by 8.3% with the cold rolling reduction rate of 35%. The inhomogeneous plastic deformation changes the Cu-Be/Cu-Zn interfaces from straight to wavy. When the cold rolling reduction rate is above 65%, different layers of the laminated metal matrix composite deform uniformly and the thickness of the layers changes according to the cold rolling reduction rate. The transition layers possess the highest microhardness, followed by the Cu-Be layers and the Cu-Zn layers have the lowest microhardness in the case of the same cold rolling reduction rate. The high microhardness of the transition layers can be attributed to the significant shear stress state caused by coordinating the deformation of metal layers during the cold rolling of laminated metal matrix composite, which generates the extra back stress strengthening.
In this work, the macroscopic deformation and strengthening mechanism of the transition layers in the Cu-Be/Cu-Zn laminated metal matrix composite during cold rolling is discussed, which contributes to better understanding of the plastic deformation characteristics and more reasonable formulating the processing during plastic forming of laminated metal matrix composite.
Key words:  Cu-Be alloy    laminated metal matrix composite    cold rolling    interface transition layer    macroscopic deformation    microhardness
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TG335.8  
基金资助: 国家自然科学基金(51701074);江西省自然科学基金(20181BAB216003);江西省教育厅项目(GJJ170407)
作者简介:  唐延川,华东交通大学副教授,硕士研究生导师,江西省机械工程学会锻压(塑性工程、模具)分会理事,入选2019年度华东交通大学“天佑人才计划”以及江苏省“双创计划”科技副总。2017年毕业于北京科技大学材料科学与工程学院,获工学博士学位,主要从事金属材料压力加工及组织性能控制、先进金属结构材料开发及金属基复合材料激光成形技术等研究。近年来,主持了国家自然科学基金、江西自然科学基金、江西省教育厅项目;以第一作者身份在国内外学术期刊上发表学术论文10余篇,申请国家发明专利及实用新型专利7项。
赵龙志,华东交通大学教授,博士研究生导师,江西省青年科学家,江西省新世纪“百千万”人才,华东交通大学“天佑学者”,“镇江制造2025”领军人才,江西机械工程学会塑性分会和模具工业协会副理事长,中国表面工程学会理事,铸造技术、兵器装备工程学报编委。近期在国内外著名期刊发表文章160余篇,其中EI检索62篇,SCI检索27篇;主持参与国家级、省部级等科研项目30余项,主要从事高性能金属基复合材料、材料表面强化和激光成型技术研究。
引用本文:    
唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
TANG Yanchuan, XU Juwen, CUI Zeyun, WANG Wenhui, ZHANG Xinlei, TANG Xingchang, ZHAO Longzhi. Cold Rolling Deformation Behavior and Interface Transition Layer Evolution of Cu-Be/Cu-Zn Laminated Composite. Materials Reports, 2021, 35(1): 1177-1182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010025  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1177
1 Xu D M, Qin G W, Li F, et al. The Chinese Journal of Nonferrous Metals,2014,24(5),1212(in Chinese).
许德美,秦高梧,李峰,等.中国有色金属学报,2014,24(5),1212.
2 Berto F, Lazzarin P, Gallo P. Journal of Strain Analysis for Engineering Design,2014,49,244.
3 Zhang H T, Jiang Y B, Xie J X, et al. Journal of Alloys and Compounds,2019,773,1121.
4 Antolovich S D, Armstrong R W. Progress in Materials Science,2014,59,1.
5 Wu X L, Zhu Y T. Materials Research Letters,2017,5(8),527.
6 Li J S, Wang S Z, Mao Q Z, et al. Materials Science and Engineering: A,2019,756,213.
7 Xu S H, Zhou C S, Liu Y. The Chinese Journal of Nonferrous Metals,2019,29(6),1125(in Chinese).
徐圣航,周承商,刘咏.中国有色金属学报,2019,29(6),1125.
8 Xing Z P, Kang S B, Kim H W. Journal of Materials Science,2002,37(4),717.
9 Zeng L F, Gao R, Fang Q F, et al. Acta Materialia,2016,110,341.
10 Zhu H F, Sun W, Kong F T, et al. Materials Science and Engineering: A,2019,742,704.
11 Mo T Q, Chen Z J, Li B X, et al. Materials Science and Engineering: A,2019,755,97.
12 Li L, Chen M Y, Gu L L, et al. Journal of Plasticity Engineering,2015,22(2),68(in Chinese).
李龙,陈梅艳,顾琳琳,等.塑性工程学报,2015,22(2),68.
13 Qin L, Fan M Y, Guo X Z, et al. Vacuum,2018,155,96.
14 Mahallawy N E, Fathy A, Abdelaziem W, et al. Materials Science and Engineering: A,2015,647,127.
15 Hosseini M, Pardis N, Danesh Manesh H, et al. Materials & Design,2017,113,128.
16 Tang R Z, Tian R Z. Binary alloy phase diagrams and crystal structure of intermediate phase, Central South University Press, China,2009(in Chinese).
唐仁政,田荣璋.二元合金相图及中间相晶体结构,中南大学出版社,2009.
17 Ma X L, Huang C X, Moering J, et al. Acta Materialia,2016,116,43.
18 Liu P, Ren F Z, Jia S G, et al. Copper alloy and its application, Chemical Industry Press, China,2007(in Chinese).
刘平,任凤章,贾淑果,等.铜合金及其应用,化学工业出版社,2007.
19 Li X B, Zu G Y, Ding M M, et al. Materials Science and Engineering: A,2011,529,485.
20 Ma X L, Huang C X, Xu W Z, et al. Scripta Materialia,2015,103,57.
21 Wu X L, Yang M X, Yuan F P, et al. Proceedings of the National Academy of Sciences,2015,112(47),14501.
[1] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[2] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[3] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[4] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[5] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[6] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[7] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[8] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[9] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[10] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[11] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[12] 唐兴昌, 张文娟, 王向飞, 张志坚. 1 200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875.
[13] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[14] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[15] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed