Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1577-1581    https://doi.org/10.11896/j.issn.1005-023X.2018.10.001
  研究快报 |
退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响
施 麒1,2, Yau Yau Tse2, Rebecca Higginson2, 陈 峰1, 陶麒鹦1
1 广东省材料与加工研究所,广州 510650;
2 拉夫堡大学材料学院,莱斯特郡,英国 LE11 3TU
Effect of Annealing Treatment on Microstructure and Micro-hardness of Equal Channel Angular Pressing Recycled Ti-6Al-4V
SHI Qi1,2, Yau Yau Tse2, Rebecca Higginson2, CHEN Feng1, TAO Qiying1
1 Guangdong Institute of Materials and Processing, Guangzhou 510650;
2 Department of Materials, Loughborough University, Leicestershire, UK, LE11 3TU
下载:  全 文 ( PDF ) ( 3897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等径角挤压法回收Ti-6Al-4V合金切屑,并研究了回收样品和退火处理样品的微观结构和显微硬度。结果表明:在回收样品中,切屑之间的边界依然存在,而由于剧烈塑性变形,超细晶结构和较强的纤维织构得以形成。退火处理后,切屑边界部分消失,超细晶组织部分再结晶;而与此同时,退火处理样品展现出更宽泛的织构,再结晶晶粒并不存在择优取向。值得注意的是,退火处理样品的显微硬度较回收样品略有升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施 麒
Yau Yau Tse
Rebecca Higginson
陈 峰
陶麒鹦
关键词:  Ti-6Al-4V  切屑  等径角挤压  超细晶结构  显微硬度    
Abstract: The present study concerns the change in microstructure and micro-hardness induced by annealing treatment for Ti-6Al-4V machining chips recycled by using equal channel angular pressing (ECAP). The microstructure exploration and micro-hardness tests upon the as-recycled Ti-6Al-4V as well as the sample experienced subsequent annealing treatment were carried out. We observed that the prior chip boundaries remained in the recycled material, and the severe plastic deformation contributed to the formation of the ultrafine grained microstructure and a strong fibre-like texture. After annealing, the chip boundaries partially dissolved and the fine grains partially recrystallized. Meantime, the annealed material exhibited a weaker texture and a wider orientation distribution was found for the recrystallized grains. It is noteworthy that the micro-hardness remained essentially unchanged, even slightly increased for the recycled Ti-6Al-4V after heat treatment.
Key words:  Ti-6Al-4V    machining chips    equal channel angular pressing    ultrafine grained microstructure    micro-hardness
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG376  
引用本文:    
施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
SHI Qi, Yau Yau Tse, Rebecca Higginson, CHEN Feng, TAO Qiying. Effect of Annealing Treatment on Microstructure and Micro-hardness of Equal Channel Angular Pressing Recycled Ti-6Al-4V. Materials Reports, 2018, 32(10): 1577-1581.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.001  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1577
1 Cui C, Hu B M, Zhao L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design,2011,32(3):1684.
2 Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science & Engineering A,1996,213(1-2):103.
3 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Progress in Materials Science,2009,54(3):397.
4 Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2009,2(1):20.
5 Haase M, Khalifa N B, Tekkaya A E, et al. Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP)[J]. Materials Science & Engineering A,2012,539(2):194.
6 Hyodo A, Bolfarini C, Ishikawa T T. Chemistry and tensile properties of a recycled AA7050 via spray forming and ECAP/E[J]. Materials Research,2012,15(5):739.
7 Aida T, Takatsuji N, Matsuki K, et al. Homogeneous consolidation process by ECAP for AZ31 cutting chips[J]. Journal of Japan Institute of Light Metals,2004,54(11):532.
8 Hu M L, Ji Z S, Chen X Y, et al. Solid-state recycling of AZ91D magnesium alloy chips[J]. Transactions of Nonferrous Metals Society of China,2012,22(10):s68.
9 Luo P, Mcdonald D T, Palanisamy S, et al. Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility[J]. Journal of Materials Processing Technology,2013,213(3):469.
10 Luo P, Mcdonald D T, Xu W, et al. A modified Hall-Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing[J]. Scripta Materialia,2012,66(10):785.
11 Luo P, Mcdonald D T, Zhu S M, et al. Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction[J]. Materials Science & Engineering A,2012,538(3):252.
12 Shi Q, Tse Y Y, Higginson R L. Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti-6Al-4V from machining chips produced by equal channel angular pressing[J]. Materials Science & Engineering A,2016,651:248.
13 Lui E W, Palanisamy S, Dargusch M S, et al. Effects of chip conditions on the solid state recycling of Ti-6Al-4V machining chips[J]. Journal of Materials Processing Technology,2016,238:297.
14 Mcdonald D T, Lui E W, Palanisamy S, et al. Achieving superior strength and ductility in Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Metallurgical & Materials Tran-sactions A,2014,45(9):4089.
15 Mcdonald D T, Luo P, Palanisamy S, et al. Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Key Engineering Materials,2012,520:295.
16 Wu S D. Nature of shear flow lines in equal-channel angular-pressed metals and alloys[J]. Philosophical Magazine Letters,2007,87(10):735.
17 Han W Z, Zhang Z F, Wu S D, et al. Anisotropic compressive pro-perties of iron subjected to single-pass equal-channel angular pressing[J]. Philosophical Magazine Letters,2006,86(7):435.
18 Fang D R, Zhang Z F, Wu S D, et al. Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys[J]. Materials Science and Engineering A,2006,426(1-2):305.
19 Beausir B, Tóth L S, Neale K W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear[J]. Acta Materialia,2007,55(8):2695.
20 Yapici G G, Karaman I. Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion[J]. Materials Science & Engineering A,2009,503(1-2):78.
21 Yapici G G, Karaman I, Luo Z P. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures[J]. Acta Materialia,2006,54(14):3755.
22 Agnew S R, Mehrotra P, Lillo T M, et al. Crystallographic textureevolution of three wrought magnesium alloys during equal channel angular extrusion[J]. Materials Science & Engineering A,2005,408(1-2):72.
23 Shin D H, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium[J]. Acta Materialia,2003,51(4):983.
24 Suwas S, Gottstein G, Kumar R. Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium[J]. Materials Science & Engineering A,2007,471(1-2):1.
25 Stráská J, Janeek M, íek J, et al. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX-ECAP)[J]. Materials Characte-rization,2014,94(8):69.
26 Higgins G T. Grain-boundary migration and grain growth[J]. Metal Science,1973,8(1):143.
27 Zhou L Z, Guo J T. Grain growth and kinetics for nanocrystalline nial[J]. Scripta Materialia,1998,40(2):139.
28 Cao P, Lu L, Lai M O. Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying[J]. Materials Research Bulletin,2001,36(5-6):981.
29 Thein M A, Lu L, Lai M O. Kinetics of grain growth in nanocrystalline magnesium-based metal-metal composite synthesized by mechanical alloying[J]. Composites Science & Technology,2006,66(3):531.
30 Chao Q, Hodgson P D, Beladi H. Thermal stability of an ultrafine grained Ti-6Al-4V alloy during post-deformation annealing[J]. Materials Science and Engineering A,2017,694:13.
31 Rack H J, Qazi J, Allard L, et al. Thermal stability of severe plastically deformed VT-6 (Ti-6Al-4V)[J]. Materials Science Forum,2008,584-586:893.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[3] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[4] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[5] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[6] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[7] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[8] 施麒,马越,毛贺,赖金涛. 应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状*[J]. 《材料导报》期刊社, 2017, 31(7): 88-93.
[9] 谢蔚, 张亚东, 周琼宇, 成祥, 胡安伟, 张路. 氢气气氛中热处理对Ni-W合金镀层组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 94-97.
[10] 毛杰, 邓春明, 吴相彬, 邓畅光, 宋进兵, 刘敏. 不同喷涂工艺下NiCoCrAlYTa涂层的显微结构和性能*[J]. 《材料导报》期刊社, 2017, 31(16): 51-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed