Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 589-592    https://doi.org/10.11896/j.issn.1005-023X.2018.04.016
  材料研究 |
等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究
王虎1, 王智慧2
1 北华航天工业学院材料工程学院,廊坊 065000;
2 北京工业大学材料科学与工程学院,北京 100124
Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys Prepared by Plasma Cladding
WANG Hu1, WANG Zhihui2
1 College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000;
2 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 2130KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用等离子熔覆法在Q235基体上制备了AlxCoCrFeNi(x=1、1.5,x为摩尔分数)高熵合金,对熔覆层的化学成分、相结构、微观组织和显微硬度进行了研究。结果表明:熔覆态高熵合金具有简单的固溶体结构,微观组织为树枝晶,Al含量从x=1增加到x=1.5时,物相组成由FCC+BCC两相转变为单一的BCC相;当x=1.5时,枝晶间有纳米级颗粒析出;Al1.5CoCrFeNi熔覆层与基体呈现良好的冶金结合,界面附近的热影响区由于珠光体脱碳分解而形成了约为80 μm宽的铁素体带;随着Al含量的增加,熔覆层的显微硬度从x=1时的478HV增加到x=1.5时的530HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王虎
王智慧
关键词:  高熵合金  等离子熔覆  微观组织  显微硬度    
Abstract: The AlxCoCrFeNi(x=1,1.5,x is mole fraction) high-entropy alloys cladding layers were prepared on Q235 steel substrate by plasma cladding. The component, crystal structure, microstructure and microhardness of the cladding layers were investigated. The results indicated that high-entropy alloys cladding layers had simple solid-solution structure. The content of aluminum increased from x=1 to x=1.5, and the phase composition transformed from the mixed FCC+BCC phase to the single BCC phase. The microstructure of cladding layers is dendrite structure. When x=1.5, the nanoparticles were deposited in the dendrite. Al1.5-CoCrFeNi alloy had a good metallurgical combination with the substrate. A ferrite band with width about 80 μm was appeared at HAZ near the interface which was caused by decarburizing of pearlite. With the addition of aluminum changed from x=1 to x=1.5, the microhardness of cladding layers increased from 478HV to 530HV.
Key words:  high-entropy alloy    plasma cladding    microstructure    microhardness
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB383  
基金资助: 河北省高等学校科学技术研究项目(QN2017301); 国家自然科学基金(51275010); 河北省廊坊市科技支撑计划项目(2017011020); 河北省大学生创新创业训练计划项目(CX2017136X)
作者简介:  王虎:男,1986年生,硕士,讲师,研究方向为材料表面改性技术 E-mail:huwang010@163.com
引用本文:    
王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
WANG Hu, WANG Zhihui. Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys Prepared by Plasma Cladding. Materials Reports, 2018, 32(4): 589-592.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.016  或          http://www.mater-rep.com/CN/Y2018/V32/I4/589
1 Zhang Y,Zhou Y,Lin J,et al.Solid-solution phase formation rules for multi-component alloys[J].Advanced Engineering Materials,2008,10(6):534.
2 Yeh J W,Chen S K,Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299.
3 Gludozatz B,Hohenwater A,Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153.
4 Zhou P F,Liu Y,Yu Y X,et al. Phase evolution and mechanical properties of AlCoCrFeNi high entropy alloys by spark plasma sintering[J].Materials Review B:Research Papers,2016,30(11):95(in Chinese).
周鹏飞,刘彧,余永新,等.放电等离子烧结制备AlCoCrFeNi高熵合金的组织演变与力学性能[J].材料导报:研究篇,2016,30(11):95.
5 Zhang Y,Zuo T T,Tang Z,et al. Microstructures and properties of high-entropy alloys[J].Process in Materials Science,2014,61(8):1.
6 Yuan Y,She F Q,Zhang T B. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy[J].Rare Metal Materials and Engineering,2012,41(5):862(in Chinese).
于源,谢发勤,张铁邦.AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能[J].稀有金属材料与工程,2012,41(5):862.
7 Chen T K,Wong M S.Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films[J].Thin Solid Films,2007,516(2):141.
8 Yao C Z,Zhang P,Liu M,et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy[J].Electrochimica Acta,2008,53(28):8359.
9 Qiu X W,Zhang Y P,He L,et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J].Journal of Alloys and Compounds,2013,549(2):195.
10 Deng D W,Chen R,Zhang H C. Present status and development tendency of plasma transferred arc welding[J].Journal of Mechanical Engineering,2013,49(7):106(in Chinese).
邓德伟,陈蕊,张洪潮.等离子堆焊技术的现状及发展趋势[J].机械工程学报,2013,49(7):106.11 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J].Intermetallics,2012,26(7):44.
12 戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:356.
13 Chen S T, Tang W Y, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J].Materials Science and Engineering A,2010,527(21):5818.
14 Pan C, Zhang Z. Characteristics of the weld interface in dissimilar austentic-pearlitic steel welds[J].Materials Characterization,1994,33(2):87.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[5] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[8] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[13] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[14] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[15] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed