Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 589-592    https://doi.org/10.11896/j.issn.1005-023X.2018.04.016
  材料研究 |
等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究
王虎1, 王智慧2
1 北华航天工业学院材料工程学院,廊坊 065000;
2 北京工业大学材料科学与工程学院,北京 100124
Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys Prepared by Plasma Cladding
WANG Hu1, WANG Zhihui2
1 College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000;
2 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 2130KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用等离子熔覆法在Q235基体上制备了AlxCoCrFeNi(x=1、1.5,x为摩尔分数)高熵合金,对熔覆层的化学成分、相结构、微观组织和显微硬度进行了研究。结果表明:熔覆态高熵合金具有简单的固溶体结构,微观组织为树枝晶,Al含量从x=1增加到x=1.5时,物相组成由FCC+BCC两相转变为单一的BCC相;当x=1.5时,枝晶间有纳米级颗粒析出;Al1.5CoCrFeNi熔覆层与基体呈现良好的冶金结合,界面附近的热影响区由于珠光体脱碳分解而形成了约为80 μm宽的铁素体带;随着Al含量的增加,熔覆层的显微硬度从x=1时的478HV增加到x=1.5时的530HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王虎
王智慧
关键词:  高熵合金  等离子熔覆  微观组织  显微硬度    
Abstract: The AlxCoCrFeNi(x=1,1.5,x is mole fraction) high-entropy alloys cladding layers were prepared on Q235 steel substrate by plasma cladding. The component, crystal structure, microstructure and microhardness of the cladding layers were investigated. The results indicated that high-entropy alloys cladding layers had simple solid-solution structure. The content of aluminum increased from x=1 to x=1.5, and the phase composition transformed from the mixed FCC+BCC phase to the single BCC phase. The microstructure of cladding layers is dendrite structure. When x=1.5, the nanoparticles were deposited in the dendrite. Al1.5-CoCrFeNi alloy had a good metallurgical combination with the substrate. A ferrite band with width about 80 μm was appeared at HAZ near the interface which was caused by decarburizing of pearlite. With the addition of aluminum changed from x=1 to x=1.5, the microhardness of cladding layers increased from 478HV to 530HV.
Key words:  high-entropy alloy    plasma cladding    microstructure    microhardness
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB383  
基金资助: 河北省高等学校科学技术研究项目(QN2017301); 国家自然科学基金(51275010); 河北省廊坊市科技支撑计划项目(2017011020); 河北省大学生创新创业训练计划项目(CX2017136X)
作者简介:  王虎:男,1986年生,硕士,讲师,研究方向为材料表面改性技术 E-mail:huwang010@163.com
引用本文:    
王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
WANG Hu, WANG Zhihui. Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys Prepared by Plasma Cladding. Materials Reports, 2018, 32(4): 589-592.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.016  或          https://www.mater-rep.com/CN/Y2018/V32/I4/589
1 Zhang Y,Zhou Y,Lin J,et al.Solid-solution phase formation rules for multi-component alloys[J].Advanced Engineering Materials,2008,10(6):534.
2 Yeh J W,Chen S K,Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299.
3 Gludozatz B,Hohenwater A,Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153.
4 Zhou P F,Liu Y,Yu Y X,et al. Phase evolution and mechanical properties of AlCoCrFeNi high entropy alloys by spark plasma sintering[J].Materials Review B:Research Papers,2016,30(11):95(in Chinese).
周鹏飞,刘彧,余永新,等.放电等离子烧结制备AlCoCrFeNi高熵合金的组织演变与力学性能[J].材料导报:研究篇,2016,30(11):95.
5 Zhang Y,Zuo T T,Tang Z,et al. Microstructures and properties of high-entropy alloys[J].Process in Materials Science,2014,61(8):1.
6 Yuan Y,She F Q,Zhang T B. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy[J].Rare Metal Materials and Engineering,2012,41(5):862(in Chinese).
于源,谢发勤,张铁邦.AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能[J].稀有金属材料与工程,2012,41(5):862.
7 Chen T K,Wong M S.Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films[J].Thin Solid Films,2007,516(2):141.
8 Yao C Z,Zhang P,Liu M,et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy[J].Electrochimica Acta,2008,53(28):8359.
9 Qiu X W,Zhang Y P,He L,et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J].Journal of Alloys and Compounds,2013,549(2):195.
10 Deng D W,Chen R,Zhang H C. Present status and development tendency of plasma transferred arc welding[J].Journal of Mechanical Engineering,2013,49(7):106(in Chinese).
邓德伟,陈蕊,张洪潮.等离子堆焊技术的现状及发展趋势[J].机械工程学报,2013,49(7):106.11 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J].Intermetallics,2012,26(7):44.
12 戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:356.
13 Chen S T, Tang W Y, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J].Materials Science and Engineering A,2010,527(21):5818.
14 Pan C, Zhang Z. Characteristics of the weld interface in dissimilar austentic-pearlitic steel welds[J].Materials Characterization,1994,33(2):87.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[8] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[9] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[10] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[15] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed