Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060288-6    https://doi.org/10.11896/cldb.22060288
  金属与金属基复合材料 |
高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征
张明晨1, 郭瑞鹏2, 张勇1,3,4,*
1 北京科技大学新金属材料国家重点实验室,北京 100083
2 太原理工大学材料科学与工程学院,太原 030024
3 北京科技大学磁光电复合与界面科学北京市重点实验室,北京 100083
4 北京科技大学顺德研究生院,广东 佛山 528399
Preparation and Characterization of High-entropy Cemented Carbide WC-AlCo0.4CrFeNi2.7
ZHANG Mingchen1, GUO Ruipeng2, ZHANG Yong1,3,4,*
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China
4 Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, Guangdong, China
下载:  全 文 ( PDF ) ( 8674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以气雾化法制备的AlCo0.4CrFeNi2.7高熵合金粉末和碳化钨(WC)分别作为粘结相和硬质相,采用放电等离子烧结制备高熵硬质合金,研究了粘结相含量和烧结温度对硬质合金的微观结构和力学性能的影响。结果表明,粘结相占比为10%(质量分数)经1 300 ℃烧结的高熵硬质合金具有最佳力学性能,硬度和断裂韧性分别为1 575HV30、9.2 MPa·m1/2。相对于粘结相含量对合金性能的影响,烧结温度的影响效果更显著;两者分别通过影响WC晶粒大小、相对密度以及有害的脆性金属间化合物的生成来影响高熵硬质合金的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明晨
郭瑞鹏
张勇
关键词:  高熵合金  硬质合金  粘结相    
Abstract: AlCo0.4CrFeNi2.7 high entropy alloy (HEA) powder prepared by gas atomization and tungsten carbide (WC) was used as binder phase and hard phase, respectively, and high-entropy cemented carbide was prepared by spark plasma sintering. The effects of binder phase content and sintering temperature on the microstructure and mechanical properties of cemented carbide were studied. The results show that the high-entropy cemented carbide with a binder phase ratio of 10wt% and sintered at 1 300 ℃ has the best mechanical properties, the hardness and fracture toughness are 1 575HV30 and 9.2 MPa·m1/2 , respectively. Compare to the influence of the binder phase content on performance, the effect of sintering temperature on performance is more significant. They affect the mechanical properties of high-entropy cemented carbide by influencing the grain size, relative density and production of harmful brittle intermetallic compounds of tungsten carbide, respectively.
Key words:  high-entropy alloy    cemented carbides    binder phase
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG135.3  
基金资助: 粤佛联合基金重点项目(2019B1515120020);中国创新群体基金(51921001)
通讯作者:  *张勇,北京科技大学教授、博士研究生导师,教育部新世纪人才,曾获得国家自然科学二等奖,教育部自然科学一等奖、二等奖和山西省科学技术二等奖。1998年北京科技大学博士毕业,2004年被评为教授。主要从事高熵合金和非晶合金等方面的研究工作,在Science、Acta Materialia、Progress in Materials Science等期刊发表论文共200余篇。drzhangy@ustb.edu.cn   
作者简介:  张明晨,2019年6月于上海海洋大学获得学士学位,现为北京科技大学新金属材料国家重点实验室研究生,在张勇教授的指导下进行研究。主要研究方向为高熵合金。
引用本文:    
张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
ZHANG Mingchen, GUO Ruipeng, ZHANG Yong. Preparation and Characterization of High-entropy Cemented Carbide WC-AlCo0.4CrFeNi2.7. Materials Reports, 2024, 38(4): 22060288-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060288  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22060288
1 García J, Collado Ciprés V, Blomqvist A, et al. International Journal of Refractory Metals and Hard Materials, 2019, 80, 40.
2 Kwak B W, Song J H, Kim B S, et al. International Journal of Refractory Metals and Hard Materials, 2016, 54, 244.
3 Kim H C, Shon I J, Garay J E, et al. International Journal of Refractory Metals and Hard Materials, 2004, 22(6), 257.
4 Zhang Y, Chen M B, Yang X, et al. Advanced technology in high-entropy alloys, Chemical Industry Press, China, 2018, pp.13 (in Chinese).
张勇, 陈明彪, 杨潇, 等. 先进高熵合金技术, 化学工业版社, 2018, pp.13.
5 Liu Y Y, Chen Z, Shi J C, et al. Vacuum, 2019, 161, 143.
6 Zhang Y. Amorphous and high entropy alloys, Science Press, China, 2010, pp.70 (in Chinese).
张勇. 非晶和高熵合金, 科学出版社, 2010, pp.70.
7 Zhou P L, Xiao D H, Zhou P F, et al. Ceramics International, 2018, 44(14), 17160.
8 Li X, Wei D, Vitos L, et al. Journal of Alloys and Compounds, 2020, 820, 153141.
9 Wang Z X, Zhang Y. Chinese Journal of Engineering, 2021, 43(5), 684 (in Chinese).
王子鑫, 张勇. 工程科学学报, 2021, 43(5), 684.
10 Tong C J, Chen Y L, Yeh J W. Metallurgical and Materials Transactions A, 2005, 36 (5), 1263.
11 Zhang P, Li Y, Chen Z, et al. Vacuum, 2019, 162, 20.
12 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
13 Fang Y, Chen N, Du G, et al. Journal of Alloys and Compounds, 2020, 815, 152486.
14 Chen C S, Yang C C, Chai H Y, et al. International Journal of Refractory Metals and Hard Materials, 2014, 43, 200.
15 Fu Z Z, Raist K. Journal of the American Ceramic Society, 2017, 100, 7.
16 Obra D L, Sayagués M J, Chicardi E, et al. Journal of Alloys and Compounds, 2020, 814, 152218.
17 Velo I L, Gotor F J, Alcalá M D, et al. Journal of Alloys and Compounds, 2018, 746, 1.
18 Mao Y, Mombello D, Baroni C. Scripta Materialia, 2011, 64(12), 1087.
19 Zhang L, Zhang Y. Frontiers in Materials, 2020, 7, 92.
20 Wu Y, Liaw P K, Zhang Y. Metals, 2021, 11, 1748.
21 Verhiest K, Mullens S, Paul J, et al. Ceramics International, 2014, 40(1), 2187.
22 Yang J H, Zhang L X, Sun Z, et al. Applied Surface Science, 2020, 499, 143912.
23 Li B S, Liu A H, Nan H, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 518.
24 Eustathopoulos N. Current Opinion in Solid State and Materials Science, 2005, 9(4), 152.
25 Aksay I A, Hoge C E, Pask J A. The Journal of Physical Chemistry, 1974, 78(12), 1178.
26 Schubert W D, Neumeister H, Kinger G, et al. International Journal of Refractory Metals and Hard Materials, 1998, 16(2), 133.
27 Shao Y, Guo Z H, Wang Y B, et al. International Journal of Refractory Metals & Hard Materials, 2021, 94, 105388.
28 Luo W Y, Liu Y Z, Shen J J. Journal of Alloys and Compounds, 2019, 791, 540.
29 Li Z J, Liu X Q, Guo K K, et al. Materials Science & Engineering A, 2019, 767, 138427.
30 Fu Z Z, Koc R. Materials Science & Engineering A, 2018, 735, 302.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 笪强, 马国政, 康嘉杰, 黄艳斐, 周永宽, 王海斗. 耐磨耐蚀高熵合金涂层性能研究进展[J]. 材料导报, 2024, 38(24): 23110145-10.
[8] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[9] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[12] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[13] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[14] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[15] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed