Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23120066-9    https://doi.org/10.11896/cldb.23120066
  金属与金属基复合材料 |
Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响
谢晓明1, 沈鹰2, 刘秀波1,*, 朱正兴1, 李明曦3,*
1 中南林业科技大学材料表界面科学与技术湖南省重点实验室,长沙 410004
2 南昌理工学院航天航空学院,南昌 330044
3 湖南省农业装备研究所,长沙 410125
Effect of Mn Content on High-temperature Tribological Properties of Laser Cladding FeCoCrNiMnx High-entropy Alloy Coatings
XIE Xiaoming1, SHEN Ying2, LIU Xiubo1,*, ZHU Zhengxing1, LI Mingxi3,*
1 Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China
2 School of Aeronautics and Astronautics, Nanchang Institute of Technology, Nanchang 330044, China
3 Agriculture Equipment Institute of Hunan, Changsha 410125, China
下载:  全 文 ( PDF ) ( 78131KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金涂层在提高钢基体的耐磨减摩性能方面具有巨大潜力,为探究不同Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响,利用激光熔覆技术成功在Q235钢表面制备了FeCoCrNiMnx(x=0,0.25,0.5,0.75,1.0)五种高熵合金涂层。通过XRD、SEM和EDS等表征方法,以及高温摩擦磨损试验等性能测试手段,对涂层的相组成、微观形貌以及高温摩擦学性能进行了系统分析,并探讨了其在高温下的耐磨减摩机理。结果表明:五种高熵合金均形成了简单的固溶体相,并无复杂相生成。相比于基材,五种涂层在高温下的耐磨减摩性能均得到显著提升。随着Mn含量的增加,涂层的平均摩擦系数呈先下降再上升的趋势,但均低于不含Mn元素的涂层。对于高温耐磨性能,五种涂层的磨损率随Mn含量的增加呈阶梯式下降。当x=1时,磨损率为最低的2.71×10-4 mm3/(N·m),相比于基材和不含Mn元素的涂层分别降低了61.2%和33.9%。涂层在高温下的磨损形式由氧化磨损和磨粒磨损主导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢晓明
沈鹰
刘秀波
朱正兴
李明曦
关键词:  激光熔覆  高熵合金  Mn掺杂  高温摩擦学性能  磨损机制    
Abstract: High-entropy alloy coatings have great potentialability to improve the wear-resistant and friction-reducing properties of steel substrates. In order to investigate the effects of different Mn contents on the high-temperature tribological properties of laser-cladding-coated FeCoCrNiMnx high-entropy alloy coatings, five high-entropy alloy coatings of FeCoCrNiMnx (x=0, 0.25, 0.5, 0.75, 1.0) were successfully prepared on the surface of Q235 steel using laser cladding technology. The phase composition, micro-morphology and high-temperature tribological properties of five coa-tings were systematically analyzed by characterization and performance testing methods, such as XRD, SEM, EDS and high-temperature friction-wear testing, then their wear-resistant and friction-reducing mechanisms at high temperatures were discussed. The results show that all five high-entropy alloys formed simple solid solution phases and no complex phases were generated. Compared to Q235 steel, five coatings have significantly improved wear and friction reduction properties at high temperature. The average friction coefficients of coatings decrease firstly and then increase with the increasing of Mn content, but the average friction coefficients of all coatings containing Mn element were lower than that without Mn element. To high temperature wear resistance, five coatings' wear rates showed an overall decreasing trend with increasing of Mn content. Among 5 kinds of coatings with Mn element, the one with x=1 got the lowest wear rate of 2.71×10-4 mm3/(N·m), which is reduced by 61.2% and 33.9% compared to substrate and the coating without Mn element, respectively, and the wear mechanisms of five coatings at high temperature are dominated by abrasive wear and oxidative wear.
Key words:  laser cladding    high-entropy alloy    Mn-doping    high-temperature tribological property    wear mechanism
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG146  
基金资助: 国家自然科学基金(52075559);湖南省重点研发计划项目(2022GK2030);湖南省农业科技创新资金项目(2022CX131)
通讯作者:  * 刘秀波,中南林业科技大学材料与科学工程学院教授、博士研究生导师。博士毕业于北京航空航天大学,目前主要从事激光加工、材料表面工程与摩擦学等方面的研究工作。至今累计发表学术论文150余篇(其中SCI检索80余篇,第一或通信作者SCI检索52篇,约80%发表在JCR二区及以上期刊,EI收录70余篇,累计SCI影响因子超过300,Web of science累计引用3 000余次);获2019年度湖南省自然科学奖二等奖(排1)、第四届中国科协期刊优秀学术论文奖(排1)、2023年中国机械工程学会优秀论文等;第一发明人有效国家发明专利10件。liuxiubosz@163.com
李明曦,湖南省农业装备研究所农用新材料研究室主任、助理研究员。硕士毕业于中南大学材料科学与工程学院,目前主要从事耐磨材料在农机装备关键零部件延寿领域的应用、热喷涂成型工艺等方面的研究工作。327692776@qq.com   
作者简介:  谢晓明,2022年6月毕业于湖南理工学院机械工程学院,获工学学士学位。现为中南林业科技大学材料科学与工程学院硕士研究生,在刘秀波教授的指导下进行研究。目前主要研究方向为表面工程与摩擦学、激光加工等。
引用本文:    
谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
XIE Xiaoming, SHEN Ying, LIU Xiubo, ZHU Zhengxing, LI Mingxi. Effect of Mn Content on High-temperature Tribological Properties of Laser Cladding FeCoCrNiMnx High-entropy Alloy Coatings. Materials Reports, 2024, 38(23): 23120066-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120066  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23120066
1 Zhu L D, Xue P S, Lan Q, et al. Optics & Laser Technology, 2021, 138, 106915.
2 Gao D Q, Wang R, Chen W. et al. Hot Working Technology, 2017, 46(12), 14(in Chinese).
高东强, 王蕊, 陈威, 等. 热加工工艺, 2017, 46(12), 14.
3 Lu P Z, Jia L, Zhang C, et al. Materials Today Communications, 2023, 37, 107162.
4 Lu Y Z, Huang G K, Wang Y Z, et al. Materials Letters, 2018, 210, 46.
5 Arif Z U, Khalid M Y, Rehman E U, et al. Journal of Manufacturing Processes, 2021, 68, 225.
6 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
7 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring, A, 2004, 375, 213.
8 Liu Y F, Chang T, Liu X B, et al. Surface Technology, 2021, 50(8), 156(in Chinese).
刘一帆, 常涛, 刘秀波, 等. 表面技术, 2021, 50(8), 156.
9 Han B, Zhang S Y, Zhang T M, et al. Intermetallics, 2023, 158, 107909.
10 Liu H, Gao Q, Dai J B, et al. Tribology International, 2022, 172, 107574.
11 Guo W M, Ding N, Liu G Q, et al. Materials Characterization, 2022, 184, 111660.
12 Li S, Lei S, Wu Y B, et al. ECS Journal of Solid State Science and Technology, 2021, 10(3), 033003.
13 Li Z T, Jing C N, Feng Y, et al. Materials Today Communications, 2023, 35, 105800.
14 Jin G, Cai Z B, Guan Y J, et al. Applied Surface Science, 2018, 445, 113.
15 Zhu Z X, Liu X B, Liu Y F, et al. Wear, 2023, 512, 204533.
16 Lin D Y, Zhang N N, He B, et al. Journal of Iron and Steel Research International, 2017, 24(2), 184.
17 Hao W J, Sun R L, Niu W, et al. Surface Technology, 2021, 50(8), 343(in Chinese).
郝文俊, 孙荣禄, 牛伟, 等. 表面技术, 2021, 50(8), 343.
18 Jiang H, Han K M, Li D Y, et al. Crystals, 2018, 8(11), 409.
19 Yuan Q L, Feng X D, Cao J J, et al. Materials Reports, 2010, 24(3), 112(in Chinese).
袁庆龙, 冯旭东, 曹晶晶, 等. 材料导报, 2010, 24(3), 112.
20 Wang Y D, Gong S L, Tang M R, et al. Journal of Heilongjiang University of Science & Technology, 2022, 32(3), 368(in Chinese).
王永东, 宫书林, 汤明日, 等. 黑龙江科技大学学报, 2022, 32(3), 368.
21 Zhang M N, Wang D F, He L J, et al. Optics & Laser Technology, 2022, 149, 107845.
22 Mohanty A, Sampreeth J K, Bembalge O, et al. Surface and Coatings Technology, 2019, 380, 125028.
23 Yang X, Chen S Y, Cotton J D, et al. Jom, 2014, 66, 2009.
24 Smilgies D M. Journal of Applied Crystallography, 2009, 42(6), 1030.
25 Zhang T, Zhao R D, Wu F F, et al. Materials Science and Engineering, A, 2020, 780, 139182.
26 Wang C M, Yu J X, Zhang Y, et al. Materials & Design, 2019, 182, 108040.
27 Song B X, Yu T B, Jiang X Y, et al. International Journal of Mechanical Sciences, 2020, 165, 105207.
28 Khoramm A, Jamaloei A D, Jagari A, et al. Journal of Materials Processing Technology, 2020, 284, 116735.
29 Nishizawa T, Ishida K. Bulletin of Alloy Phase Diagrams, 1984, 5(3), 250.
30 Naghavi S S, Hegde V I, Wolverton C. Acta Materialia, 2017, 132, 467.
31 Teskeredzic A, Demirdzic I, Muzaferija S. Numerical Heat Transfer, Part B: Fundamentals, 2015, 68(4), 295.
32 Gao Z N, Wang L L, Wang Y N, et al. Journal of Alloys and Compounds, 2022, 903, 163905.
33 Cui Y, Shen J, Manladan S M, et al. Applied Surface Science, 2020, 512, 145736.
34 Zhu Z X, Liu X B, Liu Y F, et al. Journal of Materials Engineering, 2023, 51(3), 78(in Chinese).
朱正兴, 刘秀波, 刘一帆, 等. 材料工程, 2023, 51(3), 78.
35 Sun D, Cai Y C, Zhu L S, et al. Surface and Coatings Technology, 2022, 438, 128407.
[1] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[4] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[5] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[6] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[7] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[8] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[9] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[10] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[11] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[12] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[13] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[14] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[15] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed