Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23110167-12    https://doi.org/10.11896/cldb.23110167
  高分子与聚合物基复合材料 |
MOFs基材料对水中重金属离子的吸附研究进展
李天泽1,2, 马应霞1,*, 李淼石1, 叶晓飞1, 柴小军2,*
1 兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 甘肃省生态环境科学设计研究院,兰州 730020
Research Progress on Adsorption of Metal-organic Framework Based Materials for Heavy Metal Ions
LI Tianze1,2, MA Yingxia1,*, LI Miaoshi1, YE Xiaofei1, CHAI Xiaojun2,*
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science & Engineering, Lanzhou University of Techno-logy, Lanzhou 730050, China
2 Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China
下载:  全 文 ( PDF ) ( 17216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机框架(Metal-organic frameworks,MOFs)材料作为一类新兴的多孔材料,具有高的比表面积、可调节的孔径和结构、表面易修饰和功能化等特点,在水处理领域的应用受到了人们的高度关注。近年来,研究人员设计合成了多种MOFs材料并研究了其对水中重金属离子的吸附性能和吸附机理。为了进一步提高材料的吸附量、结构稳定性和吸附选择性,研究者们还通过在MOFs中引入各种官能团或不饱和金属位点获得改性MOFs材料、与其他材料相结合构筑MOFs复合材料以及对MOFs进行后处理制备MOFs衍生碳材料的策略开发了不同类型的MOFs基材料。本文综述了近年来报道的MOFs材料、改性MOFs材料、MOFs复合材料以及MOFs衍生碳材料的构筑方法,阐述了不同MOFs基材料对水中重金属离子的吸附性能及吸附机理,分析了目前MOFs基材料在实际应用时存在的问题,并对未来重点研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天泽
马应霞
李淼石
叶晓飞
柴小军
关键词:  金属有机框架材料  构筑方法  吸附性能  吸附机理  重金属离子    
Abstract: Metal-organic frameworks (MOFs), a kind of novel porous materials, have drawn significant attentions in research of water treatment field due to their characteristics such as high specific surface area, adjustable pore size and structure, facile surface modification and functiona-lization and so on. In recent years, many researchers have designed and synthesized a variety of MOFs materials and investigated their adsorption performance and adsorption mechanism for heavy metal ions in aqueous solution. In order to further improve the adsorption capacity, structural stability and adsorption selectivity, researchers have also developed various MOFs-based materials by introducing different functional groups or unsaturated metal sites into the MOFs to obtain modified MOFs materials, combining with other materials to construct MOFs composites, and post-processing the MOFs to prepare MOFs-derived carbon materials. This paper reviews the construction methods of MOFs materials, modified MOFs materials, MOFs composites and MOFs-derived carbon materials reported in recent years, expounds the adsorption performance for heavy metal ions in aqueous solution and the adsorption mechanisms, analyzes the current problems of the MOFs-based materials in the practical application, and prospects the key research directions in the future.
Key words:  metal-organic framework materials    construction methods    adsorption performance    adsorption mechanism    heavy metal ions
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  X522  
基金资助: 甘肃省自然科学基金重点项目(23JRRA818)
通讯作者:  * 马应霞,兰州理工大学教授。2012年6月毕业于兰州大学,获得理学博士学位。主要从事功能高分子的合成以及有机/无机纳米杂化材料的构筑及性能研究。主持并完成国家自然科学基金、中国博士后科学基金、甘肃省自然科学基金等科研项目,在Carbon、Journal of Hazardous Materials和Journal of Colloid and Interface Science等国内外重要刊物发表学术论文50余篇。mayx2011818@163.com
柴小军,甘肃省生态环境科学设计研究院高级工程师,甘肃省生态环境专家库成员,国家环境影响评价工程师、咨询工程师和清洁生产审核师。1997年毕业于兰州理工大学,主要从事生态环境领域科研、环境咨询和环境规划等工作。作为课题主要研究人员,主持参与各类环境科研课题10余项,获甘肃省科技进步奖三等奖1项,甘肃省环境科学技术进步奖一等奖1项、二等奖3项、三等奖1项。951191638@qq.com   
作者简介:  李天泽,2021年9月于兰州理工大学攻读硕士学位,同时在甘肃省生态环境科学设计研究院进行联合培养学习。目前主要从事MOFs基材料的制备及性能研究。
引用本文:    
李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
LI Tianze, MA Yingxia, LI Miaoshi, YE Xiaofei, CHAI Xiaojun. Research Progress on Adsorption of Metal-organic Framework Based Materials for Heavy Metal Ions. Materials Reports, 2024, 38(23): 23110167-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110167  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23110167
1 Perumal S, Atchudan R, Jebakumar I E T N, et al. Metals, 2021, 11, 864.
2 Pfister S, Boulay A M, Berger M, et al. Ecological Indicators, 2017, 72, 352.
3 Levina A, Lay P A. Coordination Chemistry Reviews, 2005, 249(3), 281.
4 Wu X X, Fu H R, Han M L, et al. Crystal Growth & Design, 2017, 17(11), 6041.
5 Li P, Yin X M, Gao L L, et al. ACS Applied Nano Materials, 2019, 2(7), 4646.
6 Li J R, Kuppler R J, Zhou H C. Chemical Society Reviews, 2009, 38(5), 1477.
7 Zhao M Y. MOFs based on linear cluster secondary building units and their reactivity. Master's Thesis, Soochow University, China, 2019 (in Chinese).
晁梦瑶. 基于线性金属簇次级构筑单元的MOF及反应性. 硕士学位论文, 苏州大学, 2019.
8 Zhang Z, Liu J, Wang Z, et al. Fuel, 2021, 289, 119791.
9 Yang J C, Wang S N, Yang S, et al. Chemical Industry and Enginnering Progress, 2021, 40(1), 463 (in Chinese).
杨建成, 王诗宁, 杨硕, 等. 化工进展, 2021, 40(1), 463.
10 Jongkind M K, Rivera-Torrente M, Nikolopoulos N, et al. Chemistry, 2021, 27(18), 5769.
11 Opanasenko M, Dhakshinamoorthy A, Hwang Y K, et al. ChemSusChem, 2013, 6(5), 865.
12 Hamon, Lomig, Serre, et al. Journal of the American Chemical Society, 2009, 131(25), 8775.
13 Sharma A, Kumar A, Li C, et al. Journal of Materials Chemistry B, 2021, 9(10), 2505.
14 Lu D F, Wang Z W, Wang F, et al. Inorganic Chemistry, 2021, 60(14), 10075.
15 Jeyaseelan A, Viswanathan N. Journal of Chemical & Engineering Data, 2020, 65(11), 5328.
16 Hu Z, Wang Y, Zhao D. Chemical Society Reviews, 2021, 50(7), 4629.
17 Smolders S, Jacobsen J, Stock N, et al. Catalysis Science & Technology, 2020, 10(2), 337.
18 Wang W, Xiong X H, Zhu N X, et al. Angewandte Chemie International Edition, 2022, 61(26), e202201766.
19 Zhou X, Chen Q, Li L, et al. Science China Chemistry, 2016, 60(1), 115.
20 Phan A, Doonan C J, Uribe-Romo F J, et al. Accounts of Chemical Research, 2010, 43(1), 58.
21 Deng H, Grunder S, Cordova K E, et al. Science, 2012, 336(6084), 1018.
22 Tao Y, Yang B, Wang F, et al. Separation and Purification Technology, 2022, 300, 121825.
23 Gul S, Ahmad Z, Asma M, et al. Chemosphere, 2022, 307(Pt 1), 135633.
24 Elsayed E, Al Dadah R, Mahmoud S, et al. Desalination, 2017, 406, 25.
25 Car A, Stropnik C, Peinemann K V. Desalination, 2006, 200(1-3), 424.
26 Eddaoudi M, Kim J, Rosi N, et al. Science, 2002, 295(5554), 469.
27 Tang F, Liu L, Wang H, et al. Journal of Colloid and Interface Science, 2019, 552, 351.
28 Tan C, Lee M C, Arshadi M, et al. Angewandte Chemie International Edition, 2020, 59(24), 9506.
29 Ma X, Lou Y, Chen X B, et al. Chemical Engineering Journal, 2019, 356, 227.
30 Jiang L, Zhang W, Luo C, et al. Industrial & Engineering Chemistry Research, 2016, 55(22), 6365.
31 Hu C, Xu W, Mo X, et al. Adsorption, 2018, 24(8), 733.
32 Zhou S, Xu W, Hu C, et al. Chemosphere, 2020, 260, 127615.
33 Xu W, Zhou S, Wang B, et al. Separation and Purification Technology, 2022, 288, 120646.
34 Wu G, Ma J, Wang S, et al. Journal of Hazardous Materials, 2020, 394, 122556.
35 Luo B C, Yuan L Y, Chai Z F, et al. Journal of Radioanalytical and Nuclear Chemistry, 2015, 307(1), 269.
36 Ru J, Wang X, Wang F, et al. Ecotoxicology and Environmental Safety, 2021, 208, 111577.
37 Lu Y, Zeng W, Hu J, et al. Microchemical Journal, 2023, 195, 109437.
38 Li H, Li M, Li W, et al. Physical Chemistry Chemical Physics, 2017, 19(8), 5746.
39 Chui S S Y, Lo S M F, Charmant J P H, et al. Science, 1999, 283(5405), 1148.
40 Singh N, Dalakoti S, Wamba H N, et al. Microporous and Mesoporous Materials, 2023, 360, 112723.
41 Conde-Gonzalez J E, Pena-Mendez E M, Rybakova S, et al. Chemosphere, 2016, 150, 659.
42 Zhao L, Duan X G, Azhar M R, et al. Chemical Engineering Journal Advances, 2020, 1, 100009.
43 Goyal P, Paruthi A, Menon D, et al. Chemical Engineering Journal, 2022, 430, 133088.
44 Zhang X, Wang B, Alsalme A, et al. Coordination Chemistry Reviews, 2020, 423, 213507.
45 Zhu H, Zhang Q, Zhu S. ACS Applied Materials & Interfaces, 2016, 8(27), 17395.
46 Ashour R M, Abdel-Magied A F, Wu Q, et al. Polymers, 2020, 12(5), 1004.
47 He Y, Dong W, Li X, et al. Journal of Colloid and Interface Science, 2020, 574, 364.
48 Quintero-Álvarez F G, Mendoza-Castillo D I, Rojas-Mayorga C K, et al. Journal of Molecular Liquids, 2023, 380, 121665.
49 Xue H, Chen Q, Jiang F, et al. Chemical Science, 2016, 7(9), 5983.
50 Fattahi M, Niazi Z, Esmaeili F, et al. Scientific Reports, 2023, 13(1), 14502.
51 Zhang Y J, Nie H X, Yu M H, et al. Journal of Solid State Chemistry, 2021, 300, 122257.
52 Yuan F, Yan D F, Zhang J B, et al. Separation and Purification Technology, 2024, 335, 126211.
53 Carboni M, Abney C W, Liu S, et al. Chemical Science, 2013, 4(6), 2396.
54 He T, Zhang Y Z, Kong X J, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16650.
55 Zhong J, Zhou J, Xiao M, et al. Chinese Chemical Letters, 2022, 33(2), 973.
56 Zhang L, Zhang J, Li X, et al. Applied Surface Science, 2021, 538, 148054.
57 Peng Y G. Design and synthesis of metal-organic frameworks for water purification. Master's Thesis, Beijing University of Chemical Technology, China, 2019 (in Chinese).
彭亚光. 用于水体净化的金属-有机骨架材料的设计合成及其性能研究. 硕士学位论文, 北京化工大学, 2019.
58 Yin Z, Wan S, Yang J, et al. Coordination Chemistry Reviews, 2019, 378, 500.
59 Cohen S M. Chemical reviews, 2012, 112(2), 970.
60 Wang Z, Cohen S M. Chemical Society Reviews, 2009, 38(5), 1315.
61 Luo X, Shen T, Ding L, et al. Journal of Hazardous Materials, 2016, 306, 313.
62 Abdollahi B, Zarei M, Salari D. Journal of Solid State Chemistry, 2022, 311, 123132.
63 Nazri S, Khajeh M, Oveisi A R, et al. Separation and Purification Technology, 2021, 259, 118197.
64 Ji C, Zhang J, Jia R, et al. Chemical Engineering Journal, 2021, 414, 128812.
65 Wang C, Xiong C, Zhang X, et al. Separation and Purification Technology, 2022, 296, 121329.
66 Ragheb E, Shamsipur M, Jalali F, et al. Journal of Environmental Che-mical Engineering, 2022, 10(2), 107297.
67 Wang C, Xiong C, He Y, et al. Chemical Engineering Journal, 2021, 415, 128923.
68 Zaman H G, Baloo L, Kutty S R, et al. Arabian Journal of Chemistry, 2023, 16(1), 104122.
69 Wang Y, Lin K, Liu Y, et al. Journal of Solid State Chemistry, 2022, 313, 123300.
70 Abdollahi N, Akbar R S A, Morsali A, et al. Journal of Hazardous Materials, 2020, 387, 121667.
71 Xiao S J, Huo X W, Fan S X, et al. Chinese Journal of Chemical Engineering, 2021, 29, 110.
72 Jamshidifard S, Koushkbaghi S, Hosseini S, et al. Journal of Hazardous Materials, 2019, 368, 10.
73 Kong L, Wang Y, Andrews C B, et al. Chemical Engineering Journal, 2022, 435, 134830.
74 Pournara A D, Moisiadis E, Gouma V, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107705.
75 Bruno R, Mon M, Escamilla P, et al. Advanced Functional Materials, 2020, 31(6), 2008499.
76 Badsha M A H, Khan M, Wu B, et al. Journal of Hazardous Materials, 2021, 408, 124463.
77 Zhang K, Luo X, Yang L, et al. ACS ES&T Water, 2021, 1(5), 1098.
78 Guo Y, Bae J, Fang Z, et al. Chemical Reviews, 2020, 120(15), 7642.
79 Muir V G, Burdick J A. Chemical Reviews, 2021, 121(18), 10908.
80 Wang W, Wang J, Zhao Y, et al. Environmental Pollution, 2020, 257, 113574.
81 Zhuang Y, Kong Y, Wang X, et al. New Journal of Chemistry, 2019, 43(19), 7202.
82 Mahmoud M E, Mohamed A K. International Journal of Biological Macromolecules, 2020, 164, 920.
83 Yang W, Wang J, Han Y, et al. Food Control, 2021, 130, 108409.
84 Mo L, Shen Y, Tan Y, et al. International Journal of Biological Macromolecules, 2021, 193(Pt B), 1488.
85 Chen D, Sun H, Wang Y, et al. Applied Surface Science, 2020, 507, 145054.
86 Bhadra B N, Ahmed I, Kim S, et al. Chemical Engineering Journal, 2017, 314, 50.
87 Tan Y X, Wang F, Zhang J. Chemical Society Reviews, 2018, 47(6), 2130.
88 Fu H R, Xu Z X, Zhang J. Chemistry of Materials, 2014, 27(1), 205.
89 Xiao L, Xu R, Yuan Q, et al. Talanta, 2017, 167, 39.
90 Guo X, Liu Q, Liu J, et al. Applied Surface Science, 2019, 491, 640.
91 Chen C, Xu L, Huo J B, et al. Chemical Engineering Journal, 2020, 391, 123552.
92 Lv Z, Wang H, Chen C, et al. Journal of Colloid and Interface Science, 2019, 537, A1.
93 Niu X, Shi Q, Zhu W, et al. Biosensors & Bioelectronics, 2019, 142, 111495.
94 Liu C, Wang P, Liu X, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14479.
95 Zheng L, Yu S, Lu X, et al. ACS Applied Materials & Interfaces, 2020, 12(12), 13878.
96 Lai Y, Wang F, Zhang Y, et al. Chemical Engineering Journal, 2019, 378, 122069.
97 Fang Y, Wen J, Zhang H, et al. Environmental Pollution, 2020, 260, 114021.
98 Lv Z, Fan Q, Xie Y, et al. Chemical Engineering Journal, 2019, 362, 413.
99 Salehi S, Mandegarzad S, Anbia M. Journal of Alloys and Compounds, 2020, 812, 152051.
100 Sun Y, Wei Y, Pei J, et al. Journal of Solid State Chemistry, 2021, 293, 121792.
[1] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[2] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[3] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[4] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[5] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[6] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[7] 李子凡, 张志宾, 董志敏, 刘云海. 金属有机框架材料吸附重金属离子和放射性核素的研究进展[J]. 材料导报, 2023, 37(12): 21060035-10.
[8] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[9] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[10] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[11] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[12] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[13] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[14] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[15] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed