Two-step Hydrothermal Synthesis of Stellerite Zeolite to High Quality Zeolite X and Its Efficient Adsorption Performance Study for Cd2+ and Ni2+
PEI Yinchang1, MO Shengpeng1, XIE Qinglin1,2,*, CHEN Nanchun3,4,*
1 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China 2 Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, Guangxi, China 3 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China 4 Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, Guangxi, China
Abstract: In this study, high quality zeolite X was conversed from stellerite zeolite by a two-step hydrothermal method. The influence of n(H2O/SiO2), n(Na2O/SiO2), n(Al2O3/SiO2), aging time, crystallization temperature and crystallization time of the stellerite zeolite conversion into zeolite X were investigated, and the adsorption performance for Cd2+ and Ni2+ of zeolite X was investigated. The results showed that the optimal conversion conditions of zeolite X were as follows:n(H2O/SiO2)=55, n(Na2O/SiO2)=1.1, n(Al2O3/SiO2)=0.33, aging time 48 h, crystallization temperature 82 ℃ and crystallization time 4 h. After dissolution, the stellerite zeolite depolymerized into the oligomeric Si species and remained in the system to participate in the growth of zeolite X, prompting the relative crystallinity and n(Si/Al) value of the synthesized zeolite X were 100% and 1.14, respectively. It was beneficial to shorten the crystallization time and reduce the crystallization temperature. And the adsorption capacity of Cd2+ and Ni2+ for zeolite X were 173.553 mg/g and 75.897 mg/g, respectively. Therefore, this study would provide theoretical basis and technical support for the rapid conversion of natural minerals into high quality zeolite X design and preparation.
裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
PEI Yinchang, MO Shengpeng, XIE Qinglin, CHEN Nanchun. Two-step Hydrothermal Synthesis of Stellerite Zeolite to High Quality Zeolite X and Its Efficient Adsorption Performance Study for Cd2+ and Ni2+. Materials Reports, 2023, 37(24): 22050310-9.
1 Liu Q F. Journal of Nanhua University (Social Science Edition), 2013, 14(3), 65 (in Chinese). 刘群芳. 南华大学学报(社会科学版), 2013, 14(3), 65. 2 Wei Y H, Huang Q C, Su X F. Environmental Science and Management, 2008(9), 45 (in Chinese). 韦友欢, 黄秋婵, 苏秀芳. 环境科学与管理, 2008(9), 45. 3 Sen W, Sun H Y, Peng L, et al. Yunnan Metallurgy, 2015, 44(1), 31 (in Chinese). 森维, 孙红燕, 彭林, 等. 云南冶金, 2015, 44(1), 31. 4 Tian F, Xia W X, Li F F, et al. China Mining Magazine, 2014, 23(S2), 85 (in Chinese). 田丰, 夏文喜, 李飞飞, 等. 中国矿业, 2014, 23(S2), 85. 5 Yan H. Study on zeolitessynthesized from fly ash and adsorption of Cd2+, Ni2+ in wasterwater. Master’s Thesis, Nanjing University of Science & Technology, China, 2013 (in Chinese). 闫惠. 利用粉煤灰制备沸石分子筛及其处理含镉、镍重金属废水的应用研究. 硕士学位论文, 南京理工大学, 2013. 6 Jiang Y X, Pan W J, Li L M. Non-Metallic Mines, 2011, 34 (2), 40 (in Chinese). 蒋月秀, 潘文杰, 李利明. 非金属矿, 2011, 34 (2), 40. 7 Zhang X H. Study on preparation of zeolite antibacterial agents and antibacterial properties. Master’s Thesis, Guilin University of Technology, China, 2013 (in Chinese). 张小虎. 分子筛抗菌剂制备及抗菌性能研究. 硕士学位论文, 桂林理工大学, 2013. 8 Yao G Y, Lei J J, Zhang X Y, et al. Materials Research Bulletin, 2018, 107, 132. 9 Kang Y H, Li J, Gao P Q, et al. Journal of Materials Science & Engineering, 2018, 36(6), 975 (in Chinese). 亢玉红, 李健, 高平强, 等. 材料科学与工程学报, 2018, 36(6), 975. 10 Zhang Y Y, Xu K J, Shi X H, et al. Journal of Synthetic Crystals, 2014, 43(11), 2999 (in Chinese). 张迎迎, 许珂敬, 史晓慧, 等. 人工晶体学报, 2014, 43(11), 2999. 11 Sivalingam S, Sen S. Environmental Science and Pollution Research, 2019, 26(34), 34693. 12 Shen S H, Zhang S G, Wang D W, et al. Journal of Central South University of Technology (English Edition), 2005, 12(3), 315. 13 Chen J L, Lu X W. Journal of Water Reuse & Desalination, 2018, 8(1), 94. 14 Lu X W, Shi D Q, Chen J L. Environmental Earth Sciences, 2017, 76, 591. 15 Gao S S, Chen N C, Pei Y C, et al. Journal of Synthetic Crystals, 2018, 47(6), 1096 (in Chinese). 高沙沙, 陈南春, 裴胤昌, 等. 人工晶体学报, 2018, 47(6), 1096. 16 Pei Y C, Zhong Y J, Xie Q L, et al. RSC Advances, 2022, 12(6), 3313. 17 Liu B M, Chu M, Bai S X, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1317 (in Chinese). 刘宝蔓, 初茉, 白书霞, 等. 硅酸盐学报, 2020, 48(8), 1317. 18 Fan F T, Feng Z C, Li G N, et al. Chemistry-A European Journal, 2008, 14(17), 5125. 19 Xiong G, Yu Y, Feng Z C, et al. Microporous and Mesoporous Materials, 2001, 42 (2-3), 317. 20 Yao G Y, Lei J J, Zhang X Y, et al. Materials, 2018, 11(6) 906. 21 Zhang Y X, Dong J X, Guo F H, et al. Minerals, 2018, 8(3), 116. 22 Hameed A M, Alharbi A, Abdelrahman E A, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10), 4117. 23 Bai S X, Chu M, Zhou L M, et al, Environmental Technology, 2018, 40(11), 1485. 24 Di Y H, Zheng S L, Li C Q, et al. Journal of the Chinese Ceramic Society, 2021, 49(7), 1385 (in Chinese). 狄永浩, 郑水林, 李春全, 等. 硅酸盐学报, 2021, 49(7), 1385. 25 Xiao W, Ma H W, Yang J, et al. Earth Science-Journal of China University of Geosciences, 2003, 28(1), 21 (in Chinese). 肖万, 马鸿文, 杨静, 等. 地球科学, 2003, 28(1), 21. 26 Zhang S Q, Cui M, Chen J H, et al. Materials Letters, 2019, 236, 233. 27 Feng C J, Wang C. Journal of Jilin University (Science Edition), 2003(4), 543 (in Chinese). 冯长君, 王超. 吉林大学学报(理学版), 2003(4), 543. 28 Fan X Y, Xie S C, Liu H, et al. Environmental Science & Technology, 2019, 42(5), 46 (in Chinese). 范先媛, 谢升昌, 刘红, 等. 环境科学与技术, 2019, 42(5), 46. 29 Shao W Y, Yi W T, Zhou Y C, et al. Journal of Zhejiang University (Engineering Science), 2015, 49(6), 1173 (in Chinese). 邵卫云, 易文涛, 周永潮, 等. 浙江大学学报(工学版), 2015, 49(6), 1173.