Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16065-16069    https://doi.org/10.11896/cldb.20070076
  无机非金属及其复合材料 |
淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响
秦媛1,2, 王文彬3, 刘加平1,2
1 东南大学材料科学与工程学院,南京 211189;
2 高性能土木工程材料国家重点实验室,南京 211103;
3 江苏苏博特新材料股份有限公司,南京 211103
Effect of Starch-based Hydration Temperature Rise Inhibitors on Hydration of Cement-Fly Ash Composite Cementitious Materials
QIN Yuan1,2, WANG Wenbin3, LIU Jiaping1,2
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 211103, China;
3 Jiangsu Sobute New Material Co., Ltd., Nanjing 211103, China
下载:  全 文 ( PDF ) ( 4590KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验主要研究了淀粉基水化温升抑制剂(TRI)对水泥-25%粉煤灰、水泥-50%粉煤灰复合胶凝材料凝结时间、抗压强度、水化放热历程的影响,并与纯水泥进行比较。通过对比TRI在水泥和粉煤灰上的吸附性能和水化产物的变化,对其影响机理进行了分析。结果表明:随TRI掺量增加,凝结时间都延长,早期强度都降低,复合体系后期(60 d)强度存在损失,但不影响纯水泥后期强度,水化放热速率峰值都大幅度降低,缓解了集中放热。水泥对TRI的吸附能力更强,导致复合体系中单位水泥吸附的TRI更多,使得降峰效果更好,同时也导致凝结时间延长更多,增大早期强度损失。TRI不影响纯水泥最终水化程度,但会延缓粉煤灰的火山灰反应,因此降低了复合体系60 d强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦媛
王文彬
刘加平
关键词:  温升抑制剂(TRI)  粉煤灰  水化历程  集中放热  吸附性能    
Abstract: This article mainly studies the effect of starch-based hydration temperature rise inhibitor (TRI) on the setting time, compressive strength, hydration heat release of composite cementitious materials, and compared with pure cement. The effect mechanism is analyzed by comparing the adsorption performance of TRI on cement and fly ash, and the changes of hydration products. The results show that the setting time is extended, and the early strength is also reduced with the increasing of TRI dosage. The TRI has negative influence on the later age strength(60d) of composite cementitious system, while does not affect the later age strength of pure cement system. TRI could effectively decrease the hydration peaks in three systems, thus distribute the heat release over time. Compared with fly ash, TRI intends to absorb on the surface of cement, which results that per cement adsorbs more TRI in composite system to reduce the heat peak more effectively. At the same time, the setting time is extended more, the early strength loss is increased. TRI does not affect the final reaction degree of pure cement system, but it may delay the volcanic reaction of fly ash, thus reduce the later strength of composite system.
Key words:  temperature rise inhibitor (TRI)    fly ash    hydration process    concentrated heat    adsorption performance
发布日期:  2021-09-07
ZTFLH:  TU52  
基金资助: 国家重点研发计划(2017YFB0310100);国家自然科学基金(51738004; 52008192);交通运输行业重点科技项目(2019-MS1-011)
通讯作者:  liujiaping@cnjsjk.cn   
作者简介:  秦媛,2018年6月毕业于重庆大学材料科学与工程学院,获得工学学士学位。现为东南大学材料科学与工程学院硕士研究生,在刘加平教授的指导下进行研究。目前主要研究方向为淀粉基水化温升抑制剂对复合胶凝材料水化的影响。
刘加平,教授,享受国务院特殊津贴的专家,教育部“长江学者”特聘教授,国家杰出青年基金获得者。主要从事高性能混凝土基础研究、技术开发与工程应用。围绕水泥基材料的收缩与裂缝控制、流变性调控和高性能化三大关键问题,先后完成了包括“973”项目、国家自然科学基金重点项目和“十一五”、“十二五”等各类科研课题30余项。
引用本文:    
秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
QIN Yuan, WANG Wenbin, LIU Jiaping. Effect of Starch-based Hydration Temperature Rise Inhibitors on Hydration of Cement-Fly Ash Composite Cementitious Materials. Materials Reports, 2021, 35(16): 16065-16069.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070076  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16065
1 Scrivener K L, Nonat A. Cement & Concrete Research, 2011, 41(7), 651.
2 Amin M N, Kim J S, Lee Y, et al. Cement & Concrete Research, 2009, 39(3), 154.
3 Seo T S, Kim S S, Lim C K. Journal of Asian Architecture & Building Engineering, 2015, 14(3), 657.
4 Ramanathan S, Moon H, Croly M, et al. Construction and Building Materials, 2019, 204(20), 621.
5 Shi M X, Wang Q, Zhou Z K. Construction and Building Materials, 2015, 98, 649.
6 Zhou Z, Sofi M, Lumantarna E, et al. Materials, 2019, 12(20), 3344.
7 Scrivener K L, Juilland P, Monteiro P J M. Cement & Concrete Research, 2015, 78, 38.
8 Lothenbach B, Scrivener K, Hooton R D. Cement & Concrete Research, 2011, 41(12), 1244.
9 Nath P, Sarker P. Procedia Engineering, 2011, 14(3), 1149.
10 刘加平, 王文彬, 李磊, 等. 中国专利, CN 103739722, 2014.
11 Zhang H, Wang W B, Li Q L. Construction and Building Materials, 2018, 173, 317.
12 Liu J P, Yu C, Shu X, et al. Cement & Concrete Research, 2019, 124, 105834.
13 Miao C W, Liu J Z, Tian Q. Chinese Engineering Science, 2013, 15(4), 30(in Chinese).
缪昌文, 刘建忠, 田倩. 中国工程科学, 2013, 15(4), 30.
14 Zhang H, Li W, Wang W B, et al. Construction and Building Materials, 2019, 199, 234.
15 Zhang H, Li L, Feng P, et al. Cement and Concrete Composites, 2018, 93, 289.
16 Lv Z F, Yu C, She W N, et al. Journal of Building Materials, 2016, 19(4), 625(in Chinese).
吕志锋, 于诚, 佘维娜, 等. 建筑材料学报, 2016, 19(4), 625.
17 Yan Y, Ouzia A, Yu C, et al. Cement & Concrete Research, 2020, 129, 105961.
18 Schöler A, Lothenbach B, Winnefeld F, et al. Cement & Concrete Research, 2017, 93, 71.
19 Scrivener K L, André N. Cement & Concrete Research, 2011, 41(7), 651.
20 Ou Z H, Ma B G, Jian S W. Construction and Building Materials, 2012, 33, 78.
21 Laskowski J S, Liu Q, O'Connor C T. International Journal of Mineral Processing, 2007, 84(1-4), 59.
22 Weerdt K D, Haha M B, Saout G L, et al. Cement & Concrete Research, 2011, 41(3), 279.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[3] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[4] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[5] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[6] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[7] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[8] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[9] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[10] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[11] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[12] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[13] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[14] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[15] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed