Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 21010007-7    https://doi.org/10.11896/cldb.21010007
  无机非金属及其复合材料 |
用于地聚合物的粉煤灰活性评价研究
刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均
重庆大学材料科学与工程学院,重庆 400044
Investigation on Potential Reactive Evaluation of Fly Ash for Geopolymer
LIU Xin, TIAN Yixuan, HUANG Jinfeng, WAN Chengming, YANG Hongyu, WAN Chaojun
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 13229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于粉煤灰的非均质性,很难直接预测粉煤灰的活性。本实验研究了不同粉煤灰在不同时间、温度和碱浓度条件下的浸出过程(先将粉煤灰在碱液中溶解,再将其残留物在酸溶液中解离)。通过电感耦合等离子体发射光谱仪(ICP)和化学分析表明,温度、反应时间和碱浓度都会影响粉煤灰的溶解速率和浸出含量。粉煤灰中浸出的反应性n(Si)/n(Al)为2.3~2.7,粉煤灰中硅和铝的总浸出量与成型用其制备的地聚合物强度呈正相关。另外,可发现建立在硅酸盐水泥体系上的粉煤灰活性评价体系并不完全适用于地聚合物体系。通过XRD、FTIR和SEM分析可发现,粉煤灰由反应性材料和惰性材料组成,而活性物质在地聚合过程中迅速溶解,酸完全解离在地聚合过程中生成的凝胶,浸出过程更能准确表征粉煤灰中反应性物质的含量。碱溶解-酸解离法可定量估算粉煤灰的反应物含量和反应性n(Si)/n(Al),并简单预测用于地聚合物体系的粉煤灰的潜在反应活性,还可指导粉煤灰地聚合物的配比设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鑫
田轶轩
黄金凤
万城铭
杨宏宇
万朝均
关键词:  粉煤灰  地聚合物  活性  溶解  抗压强度    
Abstract: Due to the heterogeneity of fly ash, it is difficult to anticipate the potential reactivity of fly ash. The leaching process of different fly ash under different conditions of time, temperature and alkali concentration (fly ash is first dissolved in lye, and its residue is dissociated in acid solution) . Inductively Coupled Plasma Optical Emission Spectrometer(ICP-OES) and chemical analysis results show that temperature, reaction time and alkali concentration all affect the dissolution rate and leaching content of fly ash. The leaching reactive n(Si)/n(Al) of fly ash was 2.3—2.7, and the total leaching amount of silica and aluminum from fly ash was positively correlated with the strength of geopolymers. It is found that the grading of fly ash used in cement system is not completely applicable to geopolymer system. XRD, FTIR and SEM analysis results show that fly ash is composed of reactive parts and inert parts. The active substances dissolve rapidly in the alkali dissolution process, the acid completely dissociates the gel formed during the geo-polymerization process, and the leaching process can more accurately characterize the content of reactive substances in fly ash. Therefore, alkali-acid combined determination method can be used to quantitatively estimate the reactant content and reactive n(Si)/n(Al) of fly ash, to simply and rapidly predict the potential reactivity of fly ash used in geopolymer systems, and to design the fly ash-based geopolymer.
Key words:  fly ash    geopolymer    activity    dissociation    compressive strength
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TU528  
基金资助: 绿色建筑材料国家重点实验室开放基金资助 (0211002402028);重庆市研究生科研创新项目(CYS18003)
通讯作者:  cjwan@cqu.edu.cn21010007-1   
作者简介:  刘鑫,重庆大学硕士研究生,主要研究粉煤灰地聚合物、纳米材料等。万朝均,重庆大学材料科学与工程学院教师,博士,教授,博士研究生导师,主要从事高性能水泥基材料研究。
引用本文:    
刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
LIU Xin, TIAN Yixuan, HUANG Jinfeng, WAN Chengming, YANG Hongyu, WAN Chaojun. Investigation on Potential Reactive Evaluation of Fly Ash for Geopolymer. Materials Reports, 2022, 36(2): 21010007-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010007  或          http://www.mater-rep.com/CN/Y2022/V36/I2/21010007
1 Hadi M N S, Al-Azzawi M, Yu T. Construction and Building Materials, 2018,175,41.
2 Chang L. Preparation and properties of polymeric cementitious materials based on Na-fly ash,Master's Thesis, Chang'an University,China,2015 (in Chinese).
常利. Na-粉煤灰基地聚合物胶凝材料的制备及性能研究.硕士学位论文. 长安大学, 2015.
3 Liu X,Peng Z C, Pan C H, et al. Materials Reports B:Research Papers , 2020,34(11),22078 (in Chinese).
刘鑫, 彭泽川, 潘晨豪, 等. 材料导报:研究篇, 2020,34(11),22078.
4 Kaya M, Uysal M, Yilmaz K, et al. Gradevinar, 2020,72(4),297.
5 Jiang X, Zhang Y, Xiao R, et al. Journal of Cleaner Production, 2020,270,122500.
6 Gollakota A R K, Volli V, Shu C. The Science of the Total Environment, 2019,672,951.
7 Jiang L. Clean Coal Technology,2020,26(4),31 (in Chinese).
姜龙. 洁净煤技术, 2020,26(4),31.
8 Chindaprasirt P, Rattanasak U, Jaturapitakkul C. Cement and Concrete Composites, 2011,33(1),55.
9 Tchadjie L N, Ekolu S O. Journal of Materials Science, 2018,53(7),4709.
10 Ibrahim M, Johari M A M, Rahman M K, et al. Construction and Buil-ding Materials, 2018,189,352.
11 Phoo-Ngernkham T, Chindaprasirt P, Sata V, et al. Materials & Design, 2014,55,58.
12 Pacheco-Torgal F, Castro-Gomes J, Jalali S. Construction and Building Materials, 2008,22(7),1305.
13 Duxson P, Fernández-Jiménez A, Provis J L, et al. Journal of Materials Science, 2007,42(9),2917.
14 Khale D, Chaudhary R. Journal of Materials Science, 2007,42(3),729.
15 Chen C, Gong W, Lutze W, et al. Journal of Materials Science, 2011,46(3),590.
16 Jia Y D,Yan P Y. Journal of the Chinese Ceramic Society,2009,37(7),1073 (in Chinese).
贾耀东, 阎培渝. 硅酸盐学报, 2009,37(7),1073.
17 GB /T 1596—2017 用于水泥和混凝土中的粉煤灰.北京: 中国标准出版社,2017.
18 Payá J, Borrachero M V, Monzó J, et al. Cement and Concrete Research, 2001,31(1),41.
19 Antiohos S, Tsimas S. Cement and Concrete Research, 2004,34(5),769.
20 Mendoza O, Tobon J I. Journal of Thermal Analysis and Calorimetry, 2013,114(2),589.
21 Qi T Y, Feng G R, Zhang Y J, et al. Materials Research Innovations, 2015,19(sup1),1.
22 Ndjock B I D L, Elimbi A, Cyr M. Journal of Non-crystalline Solids, 2017,463,31.
23 Sun Z, Vollpracht A. Cement and Concrete Research, 2018,103,110.
24 Williams R P, van Riessen A. Fuel, 2010,89(12),3683.
25 Longhi M A, Walkley B, Rodriguez E D, et al. Composites Part B Engineering, 2019,176,107172.
26 Kim T, Moradian M, Ley M T. Advances in Civil Engineering Materials, 2018,7(1),291.
27 Fernandez-Jimenez A, de la Torre A G, Palomo A, et al. Fuel, 2006,85(14-15),1960.
28 Sanalkumar K U A, Lahoti M, Yang E H. Construction and Building Materials, 2019,225,283.
29 Kuenzel C, Ranjbar N. Resources Conservation and Recycling, 2019,150,104421.
30 Yin B, Kang T H, Kang J T, et al. Spectroscopy and Spectral Analysis, 2018,38(9),2943 (in Chinese).
尹博, 康天合, 康健婷, 等. 光谱学与光谱分析, 2018,38(9),2943.
31 Hajimohammadi A, van Deventer J S J. International Journal of Mineral Processing, 2016,153,80.
32 Hou X K, Liang S, Liu Z S, et al. Bulletin of the Chinese Ceramic Society, 2017,36(11),3587 (in Chinese).
侯新凯, 梁爽, 刘柱燊, 等. 硅酸盐通报, 2017,36(11),3587.
33 Lee W K W, van Deventer J S J. Langmuir, 2003,19(21),8726.
34 Yankwa Djobo, Jean Noel, Hervé kouamo, et al. RSC Advances, 2016(6),38499.
35 Li C, Zhu H B, Wu M X, et al. Journal of Building Materials,2016,19(6),1004 (in Chinese).
李晨, 朱洪波, 吴梦雪, 等. 建筑材料学报, 2016,19(6),1004.
36 Nath S K, Maitra S, Mukherjee S, et al. Construction & Building Mate-rials, 2016,111,758.
37 Fernández-Jiménez A, Palomo A. Cement and Concrete Research, 2005,35(10),1984.
[1] 裴烈飞, 张香云, 袁子洲. 非晶态合金在废水处理中的催化性能[J]. 材料导报, 2022, 36(2): 20080033-9.
[2] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[3] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[4] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[5] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[6] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[7] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[8] 刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强. A-TIG焊接方法研究现状及展望[J]. 材料导报, 2021, 35(z2): 353-357.
[9] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[10] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[11] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[12] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[13] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[14] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[15] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed