Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9218-9222    https://doi.org/10.11896/cldb.19090183
  高分子与聚合物基复合材料 |
开关表面活性剂调控及增溶机理研究进展
代朝猛1, 李彦1, 段艳平2,*, 刘曙光1, 涂耀仁2
1 同济大学土木工程学院,上海 200092
2 上海师范大学环境与地理科学学院,上海 200234
Research Progress on Regulation and Solubilization Mechanism of Switch Surfactants
DAI Chaomeng1, LI Yan1, DUAN Yanping2,*, LIU Shuguang1, TU Yaoren2
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
下载:  全 文 ( PDF ) ( 2710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面活性剂在解决土壤地下水污染问题中的应用越来越多,但传统表面活性剂与污染物难以分离,易造成二次污染。开关表面活性剂则可通过后续条件实现分离回收,能够有效解决二次污染问题。而实现开关表面活性剂的可逆转变需要调控相应的环境条件完成,研究表明开关表面活性剂的可逆转变可通过温度、电化学(氧化还原)、光、pH、CO2/N2等条件实现。为此,本文综述了开关表面活性剂的可逆调控机制及增溶机理,重点阐述了氧化还原、CO2/N2等触发机制和泡沫增溶机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代朝猛
李彦
段艳平
刘曙光
涂耀仁
关键词:  开关表面活性剂  可逆调控  增溶机制  泡沫    
Abstract: More and more surfactants are used to solve the problems of pollutions in the groundwater, but they are easy to cause secondary pollution because of the difficult separation of traditional surfactants and pollutants. Switch surfactants can be separated and recovered by the subsequent corresponding conditions, which can effectively solve the problems of secondary pollution. While the realization of the reversible transformation of the switch surfactant requires the regulation of the corresponding environmental conditions to complete. The studies have shown that the reversible transformation of surfactants can be achieved by the changes of temperature, electrochemistry (redox), light, pH, CO2/N2 and so on. Therefore, the reversible regulation mechanism and solubilization mechanism of switch surfactants are reviewed in this paper, with emphasis on the trigger mechanisms such as redox, CO2/N2 and foam solubilization mechanism.
Key words:  switch surfactants    reversible regulation    solubilization mechanism    foam
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  X523  
基金资助: 国家自然科学基金项目(41601514;5191101399);上海市“科技创新行动计划”项目(19230742400;19ZR1459300);上海市高峰学科项目(0200121005/053;2019010202)
通讯作者:  duanyanping@shnu.edu.cn   
作者简介:  代朝猛,同济大学土木工程学院副教授,在国内外核心期刊上发表论文50余篇,其中SCI收录36篇(第一作者/通讯作者22篇),参编专著1部。申请国家专利25项,其中授权11项。国际期刊Journal of Chemistry(SCI收录)特刊编辑,美国ACS会员,科技部科技规划纲要城镇化与城市发展领域专题评估组成员,留德华人资源与环境学会会员。担任国际期刊Jacobs Journal of Hydrology编委;担任《中国环境科学》《生态毒理学报》, ChemosphereEnvironmental PollutionJournal of Hazar-dous Materials 等国内外期刊审稿人。
段艳平,上海师范大学城市发展研究院助理研究员。2008年6月硕士毕业于郑州大学环境与水利学院,2011年9月在同济大学环境科学与工程学院取得博士学位,2009—2010年在柏林工业大学环境工程系联合培养。主要从事环境中新兴污染物的分析方法、迁移转化和污染控制技术。在国内外核心学术刊物上发表论文20余篇,申请专利6项,主编专著1部,参编教材2部。担任上海市地理学会会员,美国化学协会会员,国际水协协会会员。
李彦,2018年7月本科毕业于同济大学。现为同济大学土木工程学院水利工程系硕士研究生,在代朝猛副教授的指导下进行研究。目前主要研究地下水中多环芳烃的运移机理以及修复手段等。
引用本文:    
代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
DAI Chaomeng, LI Yan, DUAN Yanping, LIU Shuguang, TU Yaoren. Research Progress on Regulation and Solubilization Mechanism of Switch Surfactants. Materials Reports, 2021, 35(9): 9218-9222.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090183  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9218
1 Dong L Y, Liang J S, Li Y, et al. Ecotoxicology and Environmental Safety,2018,166,390.
2 Anirudhan T S, Ramachandran M. Process Safety and Environmental Protection,2015,95,215.
3 Hamid Y, Fat'hi M R. Food Analytical Methods,2018,11(8),2131.
4 Befkadu A A, Chen Q Y. Pedosphere,2018,28,23.
5 Wei Z H. Economic Analysis of China Petroleum and Chemical Industry,2014(9),46(in Chinese).
魏志华.中国石油和化工经济分析,2014(9),46.
6 Liu Y X, Jessop P G, Cunningham M, et al. Science,2006,313(5789),958.
7 Le Ny A L M, Lee C T. Journal of the American Chemical Society,2006,128(19),6400.
8 Mei p, Min H B, Lai L, et al. Oilfield Chemistry,2016,33(3),564(in Chinese).
梅平,闵红博,赖璐,等.油田化学,2016,33(3),564.
9 Schimka S, Gordievskaya Y D, Lomadze N, et al. Journal of Chemical Physics,2017,147(3),6400.
10 Qin Y, Ji J L, Wang Y, et al. Detergent & Cosmetics,2009,32(11),18(in Chinese).
秦勇,纪俊玲,汪媛,等.日用化学品科学,2009,32(11),18.
11 Schrage B R, Zhao Z L, Ziegler C J, et al. ChemElectroChem,2018,5(23),3624.
12 Lin Y Y, Zhang Y D, Qiao Y, et al. Journal of Colloid & Interface Science,2011,362(2),430.
13 Aydogan N, Abbott N L. Langmuir,2001,17(19),5703.
14 Tsuchiya K, Orihara Y, Kondo Y, et al. Journal of the American Chemical Society,2004,126(39),12282.
15 Zhang Y M, Kong W W, Wang C, et al. Soft Matter,2015,11(38),7649.
16 Saji T, Hoshino K, Aoyagui S. Journal of the American Chemical Society,1985,107(24),6865.
17 Kong W W, Guo S, Wu S Q, et al. Langmuir,2016,32(38),9846.
18 Zhao X Y, Xu J, Zheng L Q, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects,2007,307(1-3),100.
19 Chu Z L, Feng Y J. Chemical Communications,2011,47(25),7191.
20 Zoppe J O, Venditti R A, Rojas O J.Journal of Colloid & Interface Science,2012,369(1),202.
21 Kuddushi M, Patel N K, Rajput S, et al. ACS Omega,2018,3,12068.
22 Lin Y Y, Han X, Huang J B, et al. Journal of Colloid and Interface Science,2009,330(2),449.
23 Tu F Q, Lee D. Journal of the American Chemical Society,2014,136(28),9999.
24 Lu H S, Shi Q P, Wang B G, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,494,74.
25 Zakrevskyy Y, Richter M, Zakrevska S, et al. Advanced Functional Materials,2012,22(23),5000.
26 Schimka S, Gordievskaya Y D, Lomadze N, et al. The Journal of Chemical Physics,2017,147(3),031101.
27 Jiang X M, Guo Q J, He Y Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2018,553,218.
28 Jessop P G, Mercer S M, Heldebrant D J. Energy & Environmental Science,2012,5(6),7240.
29 Zhang Y M, Feng Y J, Wang Y J, et al. Langmuir,2013,29(13),4187.
30 Takei T, Sakai H, Kondo Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2001,183(1),757.
31 Guo Q J, Jiang X M. Imaging Science and Photochemistry,2019,37(3),234(in Chinese).
郭茜君,姜小明.影像科学与光化学,2019,37(3),234.
32 Jiang X M, Guo Q J, Li H Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2017,535,201.
33 Jiang J Z, Zhu Y, Cui Z G, et al. Angewandte Chemie International Edition,2013,52(47),12373.
34 Tang Q W, Huang Z Y, Zheng C C, et al. Industrial & Engineering Chemistry Research,2018,57,13291.
[1] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[2] 文华银, 张文焕, 贺婉, 刘涛, 罗世凯, 周元林. 超临界CO2制备三元乙丙橡胶微孔泡沫[J]. 材料导报, 2021, 35(2): 2166-2170.
[3] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[4] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[5] 王斌, 罗晓宇, 王琛, 周晓蕊, 胡颖晖, 房二鑫. 纳米Al2O3粒子含量对碳泡沫复合材料力学和高温氧化性能的影响[J]. 材料导报, 2020, 34(18): 18159-18164.
[6] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[7] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[8] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[9] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[10] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[11] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[12] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[13] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[14] 胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
[15] 雷鸿, 张新铭, 王济平. 多孔泡沫材料强化传热特性及场协同分析[J]. 材料导报, 2018, 32(6): 1010-1014.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed