Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2095-2099    https://doi.org/10.11896/cldb.18030043
  高分子与聚合物基复合材料 |
P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能
周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅
合肥工业大学化学与化工学院,合肥 230009
Preparation of P(AN-co-MA-co-MMA)@H2O Microcapsule/Melamine Resin Foam with High Flame Resistance and Its Properties
ZHOU Shuqian, XU Weibing, ZHOU Ran, ZHOU Zhengfa, MA Haihong, REN Fengmei
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009
下载:  全 文 ( PDF ) ( 1911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用常压反相悬浮聚合法制备P(AN-co-MA-co-MMA)@H2O微胶囊发泡剂,并进一步制备P(AN-co-MA-co-MMA)@H2O/密胺泡沫复合材料。同时研究了P(AN-co-MA-co-MMA)@H2O/密胺泡沫复合材料的表观密度、泡孔结构、闭孔率、阻燃性能、压缩强度等。比较了P(AN-co-MA-co-MMA)@H2O/密胺泡沫复合材料分别以异辛烷、异辛烷微胶囊为发泡剂制备的密胺泡沫的性能。结果表明,P(AN-co-MA-co-MMA)@ H2O微胶囊/密胺泡沫复合材料的表观密度为30 kg/m3;物理性能良好,闭孔率达91%,吸水率为92%;压缩强度为143 kPa。此外,P(AN-co-MA-co-MMA)@H2O微胶囊/密胺泡沫复合材料的极限氧指数(36%)明显高于异辛烷密胺泡沫和异辛烷微胶囊/密胺泡沫复合材料的极限氧指数(分别为29%和28%)。P(AN-co-MA-co-MMA)@H2O微胶囊/密胺泡沫燃烧后的残留量为10%,明显高于其他两种密胺泡沫。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周淑千
徐卫兵
周然
周正发
马海红
任凤梅
关键词:  微胶囊密胺泡沫  阻燃性能  极限氧指数  压缩强度  闭孔率    
Abstract: P(AN-co-MA-co-MMA)@H2O microcapsule foaming agent was synthesized via inverse suspension polymerization under constant pressure, and then P(AN-co-MA-co-MMA)@H2O microcapsule/melamine resin foam composite material was further obtained. Specifically, the apparent density, foam structure, closed porosity, flame retardancy and compressive strength of the prepared composite material were studied in detail. In addition, the comparison in properties between the prepared composite material and melamine foams synthesized by using isooctane and isooctane microcapsules as foaming agents was conducted. It can be found from the results that the P(AN-co-MA-co-MMA)@H2O microcapsule/melamine resin foam with an apparent density of 30 kg/m3 was acquired, and it exhibited amazing physical properties with closed porosity of 91%, water absorption of 92% and compressive strength of 143 kPa. Besides, the limit oxygen index (LOI) of P(AN-co-MA-co-MMA)@H2O microcapsule/melamine resin foam (36%) presented a remarkable increase compared with that of isooctane melamine foam (29%) and isooctane microcapsule/melamine foam composite (28%). Moreover, the residual amount of the composite material after combustion was 10%, which is obviously higher than that of the other two kinds of melamine foam.
Key words:  microcapsule melamine resin foam    flame resistance    limit oxygen index    compressive strength    closed porosity
                    发布日期:  2019-05-31
ZTFLH:  TQ325.1  
  TQ3142  
  TB3324  
基金资助: 中央高校基本科研业务费专项资金(JD2016JGPY002;JZ2017YYPY0241)
通讯作者:  zhengfazhou@hfut.edu.cn   
作者简介:  周淑千,博士研究生,主要研究方向为高分子材料。周正发,博士,合肥工业大学教授,主要研究方向为精细与功能高分子、有机/无机复合功能材料。公开发表SCI及国内外核心期刊30余篇,授权专利十几余项。
引用本文:    
周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
ZHOU Shuqian, XU Weibing, ZHOU Ran, ZHOU Zhengfa, MA Haihong, REN Fengmei. Preparation of P(AN-co-MA-co-MMA)@H2O Microcapsule/Melamine Resin Foam with High Flame Resistance and Its Properties. Materials Reports, 2019, 33(12): 2095-2099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030043  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2095
1 He J M. New type polymer foaming material and technology, Industrial Press, China,2008 (in Chinese).
何继敏. 新型聚合物发泡材料及技术, 工业出版社, 2008.
2 Deng A M, Zhang Z G, Li M, et al. Acta Materiae Compositae Sinica, 2007, 24(5), 50 (in Chinese).
邓爱民, 张佐光, 李敏,等. 复合材料学报, 2007, 24(5), 50.
3 Han X M, Kurt W K D, Tomasko L. Journal of Polymer Engineering, 2003, 43(6), 120.
4 Guo P, Xu Y H, Lu M F. Industrial & Engineering Chemistry Research, 2015, 54, 217.
5 Jin J F, Chen Y L, Wang D N, et al. Journal of Applied Polymer Scie-nce, 2002, 84(3), 598.
6 Udabe E, Isik M, Sardon H, et al. Journal of Applied Polymer Science, 2017, 134(45), 45473.
7 Diop A, Adjalle K, Boens B, et al. Journal of Thermoplastic Composite Materials, 2017, 30(9), 1255.
8 Tanaka R, Kurogi T,Murata H. Journal of Prosthodontics, 2013, 22(8), 626.
9 Jin F L, Feng L, Shi Q B, et al. Macromolecular Research, 2017, 24(9),773.
10Sharma S, Choudhary V. Materials Research Express, 2017, 4(7), 75307.
11杜耕耘.中国专利, CN1831023A, 2005.
12Carlos Russo, UK patent, 1443024, UK,1976.
13Xu S G, Xie R. Shanxi Chemical Industry, 2015(3), 34 (in Chinese).
许曙光,谢睿.山西化工, 2015(3), 34.
14Tiwari D, Goel C, Bhunia H, et al. Journal of Environmental Management, 2017, 197, 415.
15Ding W, Liu F. Plastics Industry, 2012, 40(6), 24 (in Chinese).
丁婉,刘峰. 塑料工业, 2012, 40(6), 24.
16Zhou S Q, Zhou Z F, Xu W B, et al. Polymer-Plastics Technology and Engineering, 2017, 58,(6),1026.
17Strauss,R, Giller A, Zacharowski D, et al. U.S. patent, 4013599, 1977.
18GB/T 6343-2009.Cellular plastics and rubbers—Determination of appa-rent density,Standards Press of China,2009(in Chinese).
GB/T 6343-2009.泡沫塑料及橡胶 表观密度的测定,中国标准出版社,2009.
19GB/T 8810-2005.Determination of water absorption of rigid cellular plastics,Standards Press of China,2005(in Chinese).
GB/T 8810-2005.硬质泡沫塑料吸水率的测定,中国标准出版社,2005.
20GB/T8813-2008.Rigid cellular plastics—Determination of compression properties,Standards Press of China,2008(in Chinese).
GB/T8813-2008.硬质泡沫塑料 压缩性能的测定,中国标准出版社,2008.
21GB/T2406.1-2008.Plastics—Determination of burning behaviour by oxygen index—Part 1:Guidance,Standards Press of China,2008(in Chinese).
GB/T2406.1-2008.塑料 用氧指数法测定燃烧行为 第1部分:导则,中国标准出版社, 2008.
22Gao M, Wu W, Yan Y. Journal of Thermal Analysis and Calorimetry, 2009, 96(2), 605.
23Liu C J, Chen K, Ji L J, et al. Acta Materiae Compositae Sinica, 2015,32(3), 728 (in Chinese).
刘成娟,陈葵,纪利俊,等. 复合材料学报, 2015,32(3), 728.
24Liu J C, Yu Z L, Chen L, et al. Acta Materiae Compositae Sinica, 2013,30(4), 35 (in Chinese)
刘继纯,于卓立,陈梁,等. 复合材料学报, 2013,30(4), 35.
[1] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[2] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed