Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2100-2106    https://doi.org/10.11896/cldb.19020081
  高分子与聚合物基复合材料 |
基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析
牟信妮1,2, 卢立新1,3, 李国辉4
1 江南大学机械工程学院,无锡 214122
2 天津职业大学包装与印刷工程学院,天津 300410
3 江苏省食品先进制造装备技术重点实验室,无锡 214122
4 天津职业大学电子信息工程学院,天津 300410
In-plane Bearing Mechanism and Performance Analysis of Honeycomb Paperboard Based on Grey Relation Entropy Theory
MOU Xinni1,2, LU Lixin1,3, LI Guohui4
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122
2 School of Packaging and Printing Engineering, Tianjin Vocational Institute, Tianjin 300410
3 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122
4 School of Electronic Information Engineering, Tianjin Vocational Institute, Tianjin 300410
下载:  全 文 ( PDF ) ( 3190KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蜂窝纸板面内承载机理较为复杂,开展其承载机理、特性研究可为蜂窝纸板优化设计及工程应用提供重要的技术基础。本工作基于不同材料参数和不同结构参数的蜂窝纸板面内承载试验,分析其面内承载机理,在此基础上应用灰关联熵理论对蜂窝纸板面内承载力影响因素进行评价,得出面纸定量、蜂窝孔径和纸板厚度对承载性能的影响。结果表明:在纵向和横向承载中,芯层和面层屈曲分别呈现不同的规律性变形。面纸性能、纸板厚度对蜂窝纸板弹性模量影响较大,面纸性能、孔径尺寸、纸板厚度对平台应力影响均较为显著;灰关联熵理论适用于蜂窝材料小样本分析,面纸性能影响下的平台应力灰关联熵值最大,是影响蜂窝纸板面内平台应力的最主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牟信妮
卢立新
李国辉
关键词:  蜂窝纸板  灰关联熵  变形机理  弹性模量  平台应力    
Abstract: The in-plane bearing mechanism of honeycomb paperboard is complex. The research on its bearing mechanism and characteristics will provide an important technical basis for the optimization design and engineering application of honeycomb paperboard. Based on the in-plane bearing tests of honeycomb paperboard with different material and structure parameters, the in-plane bearing mechanism of honeycomb paperboard was preliminarily analyzed in this work. The influencing factors of in-plane bearing capacity of honeycomb paperboard were evaluated based on the grey relation entropy theory, the primary-secondary relationship and the influence degree of the face paper property, honeycomb core and paperboard thickness were obtained. The results show that the buckling of the core layer and the face layer presents different regularity in the machine and cross direction loads. The factors of face paper property and paperboard thickness have great influence on the elastic modulus of honeycomb paperboard, and the factors of face paper property, core size and paperboard thickness have significant influence on the platform stress. Grey relation entropy theory is suitable for small sample analysis, such as honeycomb materials. The grey relation entropy value is the largest on platform stress under the influence of face paper performance, so face paper property is the most important factor on affecting the in-plane platform stress of honeycomb paperboard.
Key words:  honeycomb paperboard    grey relation entropy    deformation mechanism    elastic modulus    platform stress
                    发布日期:  2019-05-31
ZTFLH:  TB484.1  
基金资助: 天津职业大学科学研究基金项目(20151102)
通讯作者:  lulx@jiangnan.edu.cn   
作者简介:  牟信妮,江南大学在读博士,天津职业大学副教授。主要研究方向为运输包装与包装结构。主持省部级项目3项,发表包装专业相关论文30余篇,主持授权专利10项。卢立新,江南大学教授、博士研究生导师。主要研究方向为包装技术与机械、包装材料等。承担国家级项目11项,发表论文210余篇,主编出版教材论著2部。
引用本文:    
牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
MOU Xinni, LU Lixin, LI Guohui. In-plane Bearing Mechanism and Performance Analysis of Honeycomb Paperboard Based on Grey Relation Entropy Theory. Materials Reports, 2019, 33(12): 2100-2106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020081  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2100
1 E Yuping, Li Longping. Packaging Journal,2015,7(1),40(in Chinese).
鄂玉萍, 李龙平. 包装学报, 2015,7(1),40.
2 Mou Xinni,Lu Lixin,Ma Yongsheng. Packaging Engineering, 2017, 38(15),72(in Chinese).
牟信妮, 卢立新, 马永胜. 包装工程, 2017, 38(15),72.
3 Tang Yong,Huang Liqiang. Packaging Engineering, 2012, 33(5),56(in Chinese).
唐勇,黄利强. 包装工程,2012, 33(5),56.
4 Lei Xiaodong, Sun Deqiang,Luo Pengfei, et al. Packaging Engineering, 2016, 37(19),39(in Chinese).
雷晓东, 孙德强, 罗鹏飞, 等. 包装工程, 2016, 37(19),39.
5 Zhang Jingjing, Chen Manru, Sun Deqiang. Packaging Engineering, 2018, 39(1),30(in Chinese).
张静静, 陈满儒, 孙德强. 包装工程, 2018, 39(1),30.
6 Zhang Jingjing, Chen Manru, Sun Deqiang. Packaging Engineering, 2017, 38(23),106(in Chinese).
张静静, 陈满儒, 孙德强. 包装工程, 2017, 38(23), 106.
7 Zheng Chen, Ning Yan.Composites Part B-Engineering, 2012, 43(5),2107.
8 Xu F X, Qiao P Z. International Journal of Solids and Structures, 2002,39(8),2153.
9 McFarland P K. AIAA,1963,l(6),1380.
10Liu L, Wang H, Guan Z. Composite Structure, 2015,121,304.
11Wang Y J. International Journal of Mechanical Sciences,1991, 33(8),637.
12Wang Z W. Packaging Technology and Science, 2012, 25(3), 173.
13Duan S Y, Tao Y, et al. Extreme Mechanics Letters, 2018, 18,9.
14Webber J P H, Kyriakides S, et al. Aeronautical Journal, 1976, 7,264.
15Thomsen O T, Rits W, et al. Composites Science and Technology, 1996, 56(4),407.
16Peng Mingjun, Sun Yong, et al. Materials Review B:Research papers, 2010,24(3),75(in Chinese).
彭明军,孙勇,等.材料导报:研究篇,2010,24(3),75.
17Zhu F, Zhao L M, et al. Transactions of Tianjin University, 2006, 12(z1),142.
18Chen D H, Ozaki S. Composite Structures, 2009,88(1),17.
19Xiong J, Zhang M, et al. Composites Part B-Engineering, 2014, 60, 350.
20Mukhopadhyay T, Adhikari S. International Journal of Solids and Structures, 2016, 91,169.
21Harkati E, Daoudi N, et al.Composite Structures, 2017,180,130.
22Zhou Y, Wang Q L, et al. Composites Part B-Engineering, 2018, 154,285.
23Ji Hongwei, Xu Geling, et al.Packaging Engineering, 2006,27(6),90(in Chinese).
计宏伟,徐革玲,等.包装工程,2006,27(6),90.
24Xu Zhaoyang. Properties of the composite material of sandwich construction with wooden faceplate and a paper honeycomb core.Doctor’s Thesis,Nanjing Forestry University, China, 2007(in Chinese).
徐朝阳.木质复合蜂窝夹芯材料性能的研究.博士学位论文,南京林业大学, 2007.
25Wang Jun, Lu Lixin. Engineering Mechanics,2012,29(8),354(in Chinese).
王军,卢立新.工程力学,2012,29(8),354.
26Deng Julong. Grey system theory tutorial(1st edition), Huazhong University of Science and Technology Press,China,1990 (in Chinese).
邓聚龙.灰色系统理论教程(第1版),华中理工大学出版社,1990.
27Zhao Jing, Yang Fan, et al. Concrete,2017(5),140 (in Chinese).
赵晶,杨帆,等.混凝土,2017(5),140.
28Sun Guoshuai, Gu Wei, et al.Concrete,2018(11),26(in Chinese).
孙国帅,顾威,等.混凝土,2018(11),26.
29Guo Xudong, Sun Zilai.Scientific Programming,DOI:10.1155/2016/1812094.
30GB/T 1454-2005 Test method for edgewise compressive properties of sandwich constructions. Standards Press of China,2005(in Chinese).
GB/T 1454-2005 夹层结构侧压性能试验方法.中国标准出版社,2005.
31GB/T 1454-2005 Packaging--basic tests for transport packages.Standards Press of China,2005(in Chinese).
GB/T 4857.2-2005 包装运输包装件基本试验温湿度调节处理.中国标准出版社,2005.
32GB/T 8168-2008 Testing method of static compression for packaging cus-hioning materials. Standards Press of China,2005(in Chinese).
GB/T 8168-2008 包装用缓冲材料静态压缩试验方法.中国标准出版社,2008.
33Jia Peiqi, Jin Tao, Shu Xuefeng.Science Technology and Engineering, 2015,15(15),132(in Chinese).
贾培奇,金涛,树学峰. 科学技术与工程,2015,15(15),132.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[3] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[4] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[5] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[6] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[7] 周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
[8] 闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
[9] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed