Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2091-2095    https://doi.org/10.11896/j.issn.1005-023X.2018.12.028
  材料研究 |
碱激发矿渣混凝土的力学性能
万小梅1,2,张宇1,赵铁军1,2,张淑文1,程杨杰1
1 青岛理工大学土木工程学院,青岛 266033;
2 青岛理工大学蓝色经济区工程建设与安全山东省协同创新中心,青岛 266033
Mechanical Properties of Alkali-activated Slag Concrete
WAN Xiaomei1,2, ZHANG Yu1, ZHAO Tiejun1,2, ZHANG Shuwen1, CHENG Yangjie1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033;
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 1949KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 文章对碱激发矿渣混凝土(AASC)的强度发展、劈拉强度、弯曲强度、弹性模量、泊松比和应力应变关系开展了试验研究和讨论,并将其与硅酸盐水泥混凝土(OPCC)进行对比,分别提出了AASC的劈拉强度、弯曲强度、弹性模量与抗压强度之间的关系模型。结果表明,相同抗压强度下,AASC的劈拉强度与OPCC基本接近,弯曲强度则高于OPCC;氢氧化钠激发矿渣混凝土的弹性模量与抗压强度的关系与OPCC基本一致,水玻璃激发矿渣混凝土的弹性模量则低于同抗压强度OPCC的弹性模量。此外,从加载过程中泊松比的变化发现,即使应力水平达到0.6,AASC的泊松比仍然保持稳定,导致其泊松比突变的应力临界水平出现在0.8左右。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万小梅
张宇
赵铁军
张淑文
程杨杰
关键词:  碱激发矿渣混凝土  力学性能  弹性模量  泊松比  应力应变曲线    
Abstract: This paper presents a series of investigation results on compressive strength, splitting strength, flexural strength, elastic modulus, Poisson’s ratio and stress-strain evolution of alkali-activated slag concrete (AASC). Based on the comparison with ordinary Portland cement concrete (OPCC), this paper proposed three models which involves the relationship between splitting strength and compressive strength, the relationship between flexural strength and compressive strength, and the relationship between elastic modulus and compressive strength. The results demonstrate that AASC is shown to be similar in splitting strength with OPCC with same compressive strength level, while to be higher in flexural strength than OPCC. And the relationship between elastic modulus and compressive strength of AASC activated by NaOH is highly close to OPCC, while the elastic modulus of AASC activated by water glass is lower than OPCC. Furthermore, it can be found that, the results of Poisson’s ratio keep stable even at the stress level of 0.6,and the critical stress level is nearly 0.8 at which Poisson’s ratio booms.
Key words:  alkali-activated slag concrete (AASC)    mechanical property    modulus of elastic    Poisson’s ratio    stress-strain curve
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TU528.01  
基金资助: 国家重点基础研究发展计划(973项目)(2015CB655100);国家自然科学基金重点国际合作项目(51420105015);山东省自然科学基金(ZR2017ZC0737)
作者简介:  万小梅:女,1974年生,博士,副教授,主要从事高性能混凝土、混凝土材料的耐久性研究 E-mail:wanxiaomeiqj@126.com
引用本文:    
万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
WAN Xiaomei, ZHANG Yu, ZHAO Tiejun, ZHANG Shuwen, CHENG Yangjie. Mechanical Properties of Alkali-activated Slag Concrete. Materials Reports, 2018, 32(12): 2091-2095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.028  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2091
1 Shi C, Jiménez A F, Palomo A. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cement and Concrete Research,2011,41(7):750.
2 Provis J L, Palomo A, Shi C. Advances in understanding alkali-activated materials[J]. Cement and Concrete Research,2015,78:110.
3 Fernández-Jiménez A, Palomo J G, Puertas F. Alkali-activated slag mortars: Mechanical strength behavior[J]. Cement and Concrete Research,1999,29(8):1313.
4 Wang S D, Scrivener K L, Pratt P L. Factors affecting the strength of alkali-activated slag[J]. Cement and Concrete Research,1994,24(6):1033.
5 Zhu H, Zhang Z, Zhu Y, et al. Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars[J]. Construction and Building Materials,2014,65(13):51.
6 Ismail I, Bernal S A, Provis J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Construction and Building Materials,2013,48(11):1187.
7 Bakharev T, Sanjayan J G, Cheng Y B. Sulfate attack on alkali-activated slag concrete[J]. Cement and Concrete Research,2002,32(2):211.
8 Thomas R J, Peethamparan S. Alkali-activated concrete: Enginee-ring properties and stress-strain behavior[J]. Construction and Building Materials,2015,93(4):49.
9 Sofi M, Deventer J S J V, Mendis P A, et al. Engineering properties of inorganic polymer concretes (IPCs)[J]. Cement and Concrete Research,2007,37(2):251.
10 Lee N K, Lee H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials,2013,47(5):1201.
11 Bernal S A, Gutiérrez R M D, Pedraza A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research,2011,41(1):1.
12 Haha M B, Saout G L, Winnefeld F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cement and Concrete Research,2011,41(3):301.
13 Puertas F, Palacios M, Manzano H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. Journal of the European Ceramic Society,2011,31(12):2043.
14 Shi C. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cement and Concrete Research,1996,26(12):1789.
15 Kumar S, Kumar R, Mehrotra S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science,2010,45(3):607.
16 British Standards Institution. Eurocode 2: Design of concrete structures. Part 1: Generalrules and rules for buildings[S]. Brussels: Europen Committee for Standardization, 2002:27.
17 American Concrete Institute. ACI Committee 318. Building code requirements for structural concrete (ACI318-11) and commentary[S]. Farmington Hills: American Concrete Institute,2005:81.
18 过镇海,时旭东.钢筋混凝土理论和分析[M].北京:清华大学出版社,2003.
19 Chi M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete[J]. Construction and Building Materials,2012,35(10):240.
20 Yang K H, Cho A R, Song J K. Effect of water-binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete[J]. Construction and Building Materials,2012,29(4):504.
21 Bernal S A, Gutiérrez R M D, Provis J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials,2012,33(3):99.
22 Shi C, Krivenko P, Roy D. Alkali-activated cements and concretes[M]. Boca Raton: CRC Press,2005.
23 Loo Y H. A new method for microcrack evaluation in concrete under compression[J]. Materials and Structures,1992,25(10):573.
24 Wan X, Su Q, Zhao T, et al. Microcracking and chloride penetration of concrete under uniaxial compression[J]. Journal of Civil, Architectural and Environmental Engineering,2013,35(1):104(in Chinese).
万小梅,苏卿,赵铁军,等.单轴受压混凝土的微裂缝和氯离子侵入性[J].土木建筑与环境工程,2013,35(1):104.
25 Zhang Y, Wan X, Zhao T, et al. Chloride penetration in alkali-activated slag concrete under uniaxial compression[C]∥3rd Internatio-nal RILEM Conference on Microstructure Related Durability of Cementitious Composites. Nanjing,2016.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[9] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed